UFR 4-20 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
m (Dave.Ellacott moved page Lib:UFR 4-20 References to UFR 4-20 References over redirect)
 
(9 intermediate revisions by the same user not shown)
Line 8: Line 8:
=== Underlying Flow Regime 4-20 ===
=== Underlying Flow Regime 4-20 ===
= References =
= References =
*Awbi HB, 2003. Ventilation of buildings. Spon Press, London.
*<div id="1">Awbi HB, 2003. Ventilation of buildings. Spon Press, London.</div>
*Awbi HB, 2007. Ventilation systems: design and performance. London: Taylor & Francis.
*<div id="2">Awbi HB, 2007. Ventilation systems: design and performance. London: Taylor & Francis.</div>
*Bajura RA, Catalano MR, 1975. Transition in a two-dimensional plane wall jet. J Fluid Mech 70:773-799.
*<div id="3">Bajura RA, Catalano MR, 1975. Transition in a two-dimensional plane wall jet. J Fluid Mech 70:773-799.</div>
*Bell JH, Mehta RD, 1988. Contraction design for small low-speed wind tunnels. NASA CR-177488; 1988.
*<div id="4">Bell JH, Mehta RD, 1988. Contraction design for small low-speed wind tunnels. NASA CR-177488; 1988.</div>
*Brassard D, Ferchichi M, 2005. Transformation of a polynomial for a contraction wall profile. J Fluids Eng 127:183-85.
*<div id="5">Brassard D, Ferchichi M, 2005. Transformation of a polynomial for a contraction wall profile. J Fluids Eng 127:183-85.</div>
*Chang KC, Hsieh, WD, Chen, CS, 1995. A modified low-Reynolds-number turbulence model applicable to recirculating flow in pipe expansion, Journal of Fluids Engineering, 117, 417–423.
*<div id="6">Chang KC, Hsieh, WD, Chen, CS, 1995. A modified low-Reynolds-number turbulence model applicable to recirculating flow in pipe expansion, Journal of Fluids Engineering, 117, 417–423.</div>
*Casey M, Wintergerste T (Eds). Best Practice Guidelines, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD, ERCOFTAC, Triomflaan 43, B-1160, Brussels; 2000.  
*<div id="7">Casey M, Wintergerste T (Eds). Best Practice Guidelines, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD, ERCOFTAC, Triomflaan 43, B-1160, Brussels; 2000.</div>
*Chen Q, 1995. Comparison of different k-&epsilon; models for indoor airflow computations. Numer Heat Tr B-Fund 28:353-69.
*<div id="8">Chen Q, 1995. Comparison of different k-&epsilon; models for indoor airflow computations. Numer Heat Tr B-Fund 28:353-69.</div>
*Chen Q, 1996. Prediction of room air motion by Reynolds-stress models. Build Environ 31:233-44.
*<div id="9">Chen Q, 1996. Prediction of room air motion by Reynolds-stress models. Build Environ 31:233-44.</div>
*Chen Q, 2009. Ventilation performance prediction for buildings: A method overview and recent applications.  Build Environ 44:848-858.
*<div id="10">Chen Q, 2009. Ventilation performance prediction for buildings: A method overview and recent applications.  Build Environ 44:848-858.</div>
*Coleman HW, Steel WG, 1999. Experimentation and uncertainty analysis for engineers. Wiley and Sons, New York, USA.
*<div id="11">Coleman HW, Steel WG, 1999. Experimentation and uncertainty analysis for engineers. Wiley and Sons, New York, USA.</div>
*Davidson L, Nielsen PV, Topp C, 2000. Low Reynolds number effects in ventilated rooms: a numerical study. Proc. of Roomvent 2000, Oxford: 307-312.
*<div id="12">Davidson L, Nielsen PV, Topp C, 2000. Low Reynolds number effects in ventilated rooms: a numerical study. Proc. of Roomvent 2000, Oxford: 307-312.</div>
*Defraeye T, 2006. Design of a vertical wind tunnel for heat and mass transfer coefficients. M.Sc. thesis. Laboratory of Building Physics, Department of Civil Engineering, K.U.Leuven.
*<div id="13">Defraeye T, 2006. Design of a vertical wind tunnel for heat and mass transfer coefficients. M.Sc. thesis. Laboratory of Building Physics, Department of Civil Engineering, K.U.Leuven.</div>
*Durbin PA, 1995. Separated flow computations with the k-&epsilon;-v<sup>2</sup> Model". AIAA Journal. 33(4). 659–664. 1995.
*<div id="14">Durbin PA, 1995. Separated flow computations with the k-&epsilon;-v<sup>2</sup> Model. AIAA Journal. 33(4). 659–664. 1995.</div>
*Etheridge DW, Sandberg M, 1996. Building Ventilation: Theory and Measurement. London: Wiley.
*<div id="15">Etheridge DW, Sandberg M, 1996. Building Ventilation: Theory and Measurement. London: Wiley.</div>
*Fluent Inc. 2006. Fluent 6.3 user’s guide, Lebanon.
*<div id="16">Fluent Inc. 2006. Fluent 6.3 user’s guide, Lebanon.</div>
*Glauert P, 1956. The wall jet. J Fluid Mech 1:625-643.
*<div id="17">Glauert P, 1956. The wall jet. J Fluid Mech 1:625-643.</div>
*Gogineni S, Shih C, 1997. Experimental investigation of the unsteady structure of a transitional plane wall jet. Exp Fluids 23:121-129.
*<div id="18">Gogineni S, Shih C, 1997. Experimental investigation of the unsteady structure of a transitional plane wall jet. Exp Fluids 23:121-129.</div>
*Jiang Y, Chen Q, 2002. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation. Build Environ 37(4):379-86.
*<div id="19">Jiang Y, Chen Q, 2002. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation. Build Environ 37(4):379-86.</div>
*Heiselberg P, Li Y, Andersen A, Bjerre M, Chen Z, 2004. Experimental and CFD evidence of multiple solutions in a naturally ventilated building. Indoor Air 14(1):43–54.
*<div id="20">Heiselberg P, Li Y, Andersen A, Bjerre M, Chen Z, 2004. Experimental and CFD evidence of multiple solutions in a naturally ventilated building. Indoor Air 14(1):43–54.</div>
*Hsiao FB, Sheu SS, 1994. Double row vortical structures in the near field region of a plane wall jet. Exp Fluids 17:291-301.
*<div id="21">Hsiao FB, Sheu SS, 1994. Double row vortical structures in the near field region of a plane wall jet. Exp Fluids 17:291-301.</div>
*Hu C-H, Ohba M, Yoshie R, 2008. CFD modelling of unsteady cross ventilation flows using LES. J Wind Eng Ind Aerodyn 96(10-11):1692-1706.
*<div id="22">Hu C-H, Ohba M, Yoshie R, 2008. CFD modelling of unsteady cross ventilation flows using LES. J Wind Eng Ind Aerodyn 96(10-11):1692-1706.</div>
*Keane RD, Adrian RJ, 1990. Optimization of particle image velocimeters. Part I: Double pulsed systems. Meas Sci Technol 1, 1202-1215.
*<div id="23">Keane RD, Adrian RJ, 1990. Optimization of particle image velocimeters. Part I: Double pulsed systems. Meas Sci Technol 1, 1202-1215.</div>
*Langtry RB, Menter FR, 2009. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal 47(12), 2894–2906.  
*<div id="24">Langtry RB, Menter FR, 2009. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal 47(12), 2894–2906.</div>
*Launder BE,  Rodi W, 1981. The turbulent wall jet. Prog Aerospace Sci 19:81-128.  
*<div id="25">Launder BE,  Rodi W, 1981. The turbulent wall jet. Prog Aerospace Sci 19:81-128.</div>
*Lichter S, Flór JB, van Heijst GJF, 1992. Modelling the separation and eddy formation of coastal currents in a stratified tank. Exp Fluids 13:11-16.
*<div id="26">Lichter S, Flór JB, van Heijst GJF, 1992. Modelling the separation and eddy formation of coastal currents in a stratified tank. Exp Fluids 13:11-16.</div>
*Li Y, Nielsen PV, 2011. CFD and ventilation research. Indoor Air 21:442-53.
*<div id="27">Li Y, Nielsen PV, 2011. CFD and ventilation research. Indoor Air 21:442-53.</div>
*Menter FR, 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32, 1598–1605.
*<div id="28">Menter FR, 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32, 1598–1605.</div>
*Menter FR, Langtry R, Völker S, 2006. Flow Turbulence Combust 77: 277-303.  
*<div id="29">Menter FR, Langtry R, Völker S, 2006. Flow Turbulence Combust 77: 277-303.</div>
*Menter FR, Smirnov PE, Liu T, Avancha R, 2015. A one-equation local correlation-based transition model. Flow Turbulence Combust 95,4 583-619.   
*<div id="30">Menter FR, Smirnov PE, Liu T, Avancha R, 2015. A one-equation local correlation-based transition model. Flow Turbulence Combust 95,4 583-619.</div>  
*Nielsen PV, 1974. Flow in air conditioned rooms, PhD Thesis, Technical University of Denmark, Copenhagen.
*<div id="31">Nielsen PV, 1974. Flow in air conditioned rooms, PhD Thesis, Technical University of Denmark, Copenhagen.</div>
*Nielsen PV, 1990. Specification of a two-dimensional test case. International Energy Agency, Energy Conservation in Buildings and Community Systems, Annex 20: Airflow Pattern within Buildings.
*<div id="32">Nielsen PV, 1990. Specification of a two-dimensional test case. International Energy Agency, Energy Conservation in Buildings and Community Systems, Annex 20: Airflow Pattern within Buildings.</div>
*Nielsen PV, 1998. The selection of turbulence models for prediction of room airflow. ASHRAE T 104(1B):1119-27.
*<div id="33">Nielsen PV, 1998. The selection of turbulence models for prediction of room airflow. ASHRAE T 104(1B):1119-27.</div>
*Nielsen PV, Filholm C, Topp C, Davidson L, 2000. Model experiments with low Reynolds number effects in a ventilated room. Proc. of Roomvent 2000), Oxford:185-190.
*<div id="34">Nielsen PV, Filholm C, Topp C, Davidson L, 2000. Model experiments with low Reynolds number effects in a ventilated room. Proc. of Roomvent 2000), Oxford:185-190.</div>
*Norton T, Grant J, Fallon R, Sun D-W, 2009. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosystems Eng 2103(1):78-99.
*<div id="35">Norton T, Grant J, Fallon R, Sun D-W, 2009. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosystems Eng 2103(1):78-99.</div>
*Prasad AK, 2000. Particle image velocimetry. Curr Sci;79:51-60.
*<div id="36">Prasad AK, 2000. Particle image velocimetry. Curr Sci;79:51-60.</div>
*Ramponi R, Blocken B, 2012. CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters. Build Environ, 53, 34-48.
*<div id="37">Ramponi R, Blocken B, 2012. CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters. Build Environ, 53, 34-48.</div>
*Sørensen DN, Nielsen PV, 2003. Quality control of computational fluid dynamics in indoor environments. Indoor Air 13:2–17.
*<div id="38">Sørensen DN, Nielsen PV, 2003. Quality control of computational fluid dynamics in indoor environments. Indoor Air 13:2–17.</div>
*Topp C, Nielsen PV, Davidson L, 2000. Room airflows with low Reynolds number effects. Proc. of Roomvent 2000), Oxford:541-546.
*<div id="39">Topp C, Nielsen PV, Davidson L, 2000. Room airflows with low Reynolds number effects. Proc. of Roomvent 2000), Oxford:541-546.</div>
*van Hooff T, Blocken B, 2010. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium. Environ Modell Softw, 25(1), 51-65.
*<div id="40">van Hooff T, Blocken B, 2010. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium. Environ Modell Softw, 25(1), 51-65.</div>
*van Hooff T, Blocken B, 2010. On the effect of wind direction and urban surrounding on natural ventilation of a large semi-enclosed stadium. Comput Fluids 39: 1146-55.
*<div id="41">van Hooff T, Blocken B, 2010. On the effect of wind direction and urban surrounding on natural ventilation of a large semi-enclosed stadium. Comput Fluids 39: 1146-55.</div>
*van Hooff T, Blocken B, Defraeye T, Carmeliet J, van Heijst GJF, 2012a. PIV measurements of a plane wall jet in a confined space at transitional slot Reynolds numbers. Exp Fluids, 53(2), 499-517.  
*<div id="42">van Hooff T, Blocken B, Defraeye T, Carmeliet J, van Heijst GJF, 2012a. PIV measurements of a plane wall jet in a confined space at transitional slot Reynolds numbers. Exp Fluids, 53(2), 499-517.</div>
*van Hooff T, Blocken B, Defraeye T, Carmeliet J, van Heijst GJF, 2012b. PIV measurements and analysis of transitional flow in a reduced-scale model: ventilation by a free plane jet with Coanda effect. Build Environ, 56, 301-313.  
*<div id="43">van Hooff T, Blocken B, Defraeye T, Carmeliet J, van Heijst GJF, 2012b. PIV measurements and analysis of transitional flow in a reduced-scale model: ventilation by a free plane jet with Coanda effect. Build Environ, 56, 301-313.</div>
*van Hooff T, Blocken B, Aanen L, Bronsema B, 2012c. Numerical analysis of the performance of a venturi-shaped roof for natural ventilation: influence of building width. J Wind Eng Ind Aerodyn, 104-106, 419-427.
*<div id="44">van Hooff T, Blocken B, Aanen L, Bronsema B, 2012c. Numerical analysis of the performance of a venturi-shaped roof for natural ventilation: influence of building width. J Wind Eng Ind Aerodyn, 104-106, 419-427.</div>
*van Hooff T, Blocken B, van Heijst GJF, 2013. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. Indoor Air 23, 236-249.
*<div id="45">van Hooff T, Blocken B, van Heijst GJF, 2013. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. Indoor Air 23, 236-249.</div>
*van Hooff T, Blocken B, Gousseau P, van Heijst GJF, 2014. Counter-gradient diffusion in a slot-ventilated enclosure assessed by LES and RANS. Comput Fluids 96, 63-75.
*<div id="46">van Hooff T, Blocken B, Gousseau P, van Heijst GJF, 2014. Counter-gradient diffusion in a slot-ventilated enclosure assessed by LES and RANS. Comput Fluids 96, 63-75.</div>
*van Hooff T, Blocken B, 2017. Low-Reynolds number mixing ventilation flows: impact of physical and numerical diffusion on flow and dispersion. Build Simul 10(4): 589-606.
*<div id="47">van Hooff T, Blocken B, 2017. Low-Reynolds number mixing ventilation flows: impact of physical and numerical diffusion on flow and dispersion. Build Simul 10(4): 589-606.</div>
*Verhoff A, 1963. The two-dimensional turbulent wall jet with and without an external stream. Report 626, Princeton University, New Jersey, USA.
*<div id="48">Verhoff A, 1963. The two-dimensional turbulent wall jet with and without an external stream. Report 626, Princeton University, New Jersey, USA.</div>
*Wang M, Chen Q, 2009. Assessment of various turbulence models for transitional flows in enclosed environment. HVAC&R Res, 15:1099-1119.  
*<div id="49">Wang M, Chen Q, 2009. Assessment of various turbulence models for transitional flows in enclosed environment. HVAC&R Res, 15:1099-1119.</div>
*Wang M, Chen Q, 2010. On a hybrid RANS/LES approach for indoor airflow modelling. HVAC&R Res, 16:731-747.  
*<div id="50">Wang M, Chen Q, 2010. On a hybrid RANS/LES approach for indoor airflow modelling. HVAC&R Res, 16:731-747.</div>
*Wilcox DC, 1998. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California.
*<div id="51">Wilcox DC, 1998. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California.</div>
*Wright NG, Hargreaves DM, 2006. Unsteady CFD simulations for natural ventilation. Int J Vent 5(1):13-20.
*<div id="52">Wright NG, Hargreaves DM, 2006. Unsteady CFD simulations for natural ventilation. Int J Vent 5(1):13-20.</div>
*Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG, 1992. Development of turbulence models for shear flows by a double expansion technique, Phys Fluids A, 4, 1510-1520.
*<div id="53">Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG, 1992. Development of turbulence models for shear flows by a double expansion technique, Phys Fluids A, 4, 1510-1520.</div>
*Zhang G, Morsing S, Bjerg B Svidt K, Strøm JS, 2000. Test room for validation of airflow patterns estimated by computational fluid dynamics. J Agric Eng Res 76:141-48.
*<div id="54">Zhang G, Morsing S, Bjerg B Svidt K, Strøm JS, 2000. Test room for validation of airflow patterns estimated by computational fluid dynamics. J Agric Eng Res 76:141-48.</div>
<br/>
----
----
{{ACContribs
{{ACContribs
|authors=T. van Hooff
|authors=T. van Hooff(*), B. Blocken(*), G.J.F. van Heijst(**)
|organisation=Eindhoven University of Technology
|organisation=(*)Dept. of Civil Engineering, KU Leuven, Belgium and Dept. of the Built Environment, Eindhoven University of Technology, the Netherlands.<br>(**)Dept. of Applied Physics, Eindhoven University of Technology, the Netherlands
}}
}}
{{UFRHeader
{{UFRHeader

Latest revision as of 11:34, 2 March 2018

Mixing ventilation flow in an enclosure driven by a transitional wall jet

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Confined Flows

Underlying Flow Regime 4-20

References

  • Awbi HB, 2003. Ventilation of buildings. Spon Press, London.
  • Awbi HB, 2007. Ventilation systems: design and performance. London: Taylor & Francis.
  • Bajura RA, Catalano MR, 1975. Transition in a two-dimensional plane wall jet. J Fluid Mech 70:773-799.
  • Bell JH, Mehta RD, 1988. Contraction design for small low-speed wind tunnels. NASA CR-177488; 1988.
  • Brassard D, Ferchichi M, 2005. Transformation of a polynomial for a contraction wall profile. J Fluids Eng 127:183-85.
  • Chang KC, Hsieh, WD, Chen, CS, 1995. A modified low-Reynolds-number turbulence model applicable to recirculating flow in pipe expansion, Journal of Fluids Engineering, 117, 417–423.
  • Casey M, Wintergerste T (Eds). Best Practice Guidelines, ERCOFTAC Special Interest Group on Quality and Trust in Industrial CFD, ERCOFTAC, Triomflaan 43, B-1160, Brussels; 2000.
  • Chen Q, 1995. Comparison of different k-ε models for indoor airflow computations. Numer Heat Tr B-Fund 28:353-69.
  • Chen Q, 1996. Prediction of room air motion by Reynolds-stress models. Build Environ 31:233-44.
  • Chen Q, 2009. Ventilation performance prediction for buildings: A method overview and recent applications. Build Environ 44:848-858.
  • Coleman HW, Steel WG, 1999. Experimentation and uncertainty analysis for engineers. Wiley and Sons, New York, USA.
  • Davidson L, Nielsen PV, Topp C, 2000. Low Reynolds number effects in ventilated rooms: a numerical study. Proc. of Roomvent 2000, Oxford: 307-312.
  • Defraeye T, 2006. Design of a vertical wind tunnel for heat and mass transfer coefficients. M.Sc. thesis. Laboratory of Building Physics, Department of Civil Engineering, K.U.Leuven.
  • Durbin PA, 1995. Separated flow computations with the k-ε-v2 Model. AIAA Journal. 33(4). 659–664. 1995.
  • Etheridge DW, Sandberg M, 1996. Building Ventilation: Theory and Measurement. London: Wiley.
  • Fluent Inc. 2006. Fluent 6.3 user’s guide, Lebanon.
  • Glauert P, 1956. The wall jet. J Fluid Mech 1:625-643.
  • Gogineni S, Shih C, 1997. Experimental investigation of the unsteady structure of a transitional plane wall jet. Exp Fluids 23:121-129.
  • Jiang Y, Chen Q, 2002. Effect of fluctuating wind direction on cross natural ventilation in buildings from large eddy simulation. Build Environ 37(4):379-86.
  • Heiselberg P, Li Y, Andersen A, Bjerre M, Chen Z, 2004. Experimental and CFD evidence of multiple solutions in a naturally ventilated building. Indoor Air 14(1):43–54.
  • Hsiao FB, Sheu SS, 1994. Double row vortical structures in the near field region of a plane wall jet. Exp Fluids 17:291-301.
  • Hu C-H, Ohba M, Yoshie R, 2008. CFD modelling of unsteady cross ventilation flows using LES. J Wind Eng Ind Aerodyn 96(10-11):1692-1706.
  • Keane RD, Adrian RJ, 1990. Optimization of particle image velocimeters. Part I: Double pulsed systems. Meas Sci Technol 1, 1202-1215.
  • Langtry RB, Menter FR, 2009. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal 47(12), 2894–2906.
  • Launder BE, Rodi W, 1981. The turbulent wall jet. Prog Aerospace Sci 19:81-128.
  • Lichter S, Flór JB, van Heijst GJF, 1992. Modelling the separation and eddy formation of coastal currents in a stratified tank. Exp Fluids 13:11-16.
  • Li Y, Nielsen PV, 2011. CFD and ventilation research. Indoor Air 21:442-53.
  • Menter FR, 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32, 1598–1605.
  • Menter FR, Langtry R, Völker S, 2006. Flow Turbulence Combust 77: 277-303.
  • Menter FR, Smirnov PE, Liu T, Avancha R, 2015. A one-equation local correlation-based transition model. Flow Turbulence Combust 95,4 583-619.
  • Nielsen PV, 1974. Flow in air conditioned rooms, PhD Thesis, Technical University of Denmark, Copenhagen.
  • Nielsen PV, 1990. Specification of a two-dimensional test case. International Energy Agency, Energy Conservation in Buildings and Community Systems, Annex 20: Airflow Pattern within Buildings.
  • Nielsen PV, 1998. The selection of turbulence models for prediction of room airflow. ASHRAE T 104(1B):1119-27.
  • Nielsen PV, Filholm C, Topp C, Davidson L, 2000. Model experiments with low Reynolds number effects in a ventilated room. Proc. of Roomvent 2000), Oxford:185-190.
  • Norton T, Grant J, Fallon R, Sun D-W, 2009. Assessing the ventilation effectiveness of naturally ventilated livestock buildings under wind dominated conditions using computational fluid dynamics. Biosystems Eng 2103(1):78-99.
  • Prasad AK, 2000. Particle image velocimetry. Curr Sci;79:51-60.
  • Ramponi R, Blocken B, 2012. CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters. Build Environ, 53, 34-48.
  • Sørensen DN, Nielsen PV, 2003. Quality control of computational fluid dynamics in indoor environments. Indoor Air 13:2–17.
  • Topp C, Nielsen PV, Davidson L, 2000. Room airflows with low Reynolds number effects. Proc. of Roomvent 2000), Oxford:541-546.
  • van Hooff T, Blocken B, 2010. Coupled urban wind flow and indoor natural ventilation modelling on a high-resolution grid: A case study for the Amsterdam ArenA stadium. Environ Modell Softw, 25(1), 51-65.
  • van Hooff T, Blocken B, 2010. On the effect of wind direction and urban surrounding on natural ventilation of a large semi-enclosed stadium. Comput Fluids 39: 1146-55.
  • van Hooff T, Blocken B, Defraeye T, Carmeliet J, van Heijst GJF, 2012a. PIV measurements of a plane wall jet in a confined space at transitional slot Reynolds numbers. Exp Fluids, 53(2), 499-517.
  • van Hooff T, Blocken B, Defraeye T, Carmeliet J, van Heijst GJF, 2012b. PIV measurements and analysis of transitional flow in a reduced-scale model: ventilation by a free plane jet with Coanda effect. Build Environ, 56, 301-313.
  • van Hooff T, Blocken B, Aanen L, Bronsema B, 2012c. Numerical analysis of the performance of a venturi-shaped roof for natural ventilation: influence of building width. J Wind Eng Ind Aerodyn, 104-106, 419-427.
  • van Hooff T, Blocken B, van Heijst GJF, 2013. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers. Indoor Air 23, 236-249.
  • van Hooff T, Blocken B, Gousseau P, van Heijst GJF, 2014. Counter-gradient diffusion in a slot-ventilated enclosure assessed by LES and RANS. Comput Fluids 96, 63-75.
  • van Hooff T, Blocken B, 2017. Low-Reynolds number mixing ventilation flows: impact of physical and numerical diffusion on flow and dispersion. Build Simul 10(4): 589-606.
  • Verhoff A, 1963. The two-dimensional turbulent wall jet with and without an external stream. Report 626, Princeton University, New Jersey, USA.
  • Wang M, Chen Q, 2009. Assessment of various turbulence models for transitional flows in enclosed environment. HVAC&R Res, 15:1099-1119.
  • Wang M, Chen Q, 2010. On a hybrid RANS/LES approach for indoor airflow modelling. HVAC&R Res, 16:731-747.
  • Wilcox DC, 1998. Turbulence Modeling for CFD. DCW Industries, Inc., La Canada, California.
  • Wright NG, Hargreaves DM, 2006. Unsteady CFD simulations for natural ventilation. Int J Vent 5(1):13-20.
  • Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG, 1992. Development of turbulence models for shear flows by a double expansion technique, Phys Fluids A, 4, 1510-1520.
  • Zhang G, Morsing S, Bjerg B Svidt K, Strøm JS, 2000. Test room for validation of airflow patterns estimated by computational fluid dynamics. J Agric Eng Res 76:141-48.


Contributed by: T. van Hooff(*), B. Blocken(*), G.J.F. van Heijst(**) — (*)Dept. of Civil Engineering, KU Leuven, Belgium and Dept. of the Built Environment, Eindhoven University of Technology, the Netherlands.
(**)Dept. of Applied Physics, Eindhoven University of Technology, the Netherlands

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024