Test Data AC2-09: Difference between revisions

From KBwiki
Jump to navigation Jump to search
 
m (Dave.Ellacott moved page SilverP:Test Data AC2-09 to Test Data AC2-09)
 
(161 intermediate revisions by the same user not shown)
Line 1: Line 1:
#REDIRECT [[Libr:Test Data AC2-09]]
{{ACHeader
|area=2
|number=09
}}
__TOC__
=SANDIA Flame D=
'''Application Challenge AC2-09'''   © copyright ERCOFTAC {{CURRENTYEAR}}                           
=Overview of Tests=
The velocity measurements were performed with two-component  fiber-optic
laser Doppler anemometer (Dantec). All the details  of  the  flow  field
measuring techniques applied in Sandia Flame D experiment are  explained
in<ref name='refdesc1'>'''Schneider Ch., Dreizler A., Janicka J., Hassel E.P.''', "Flow field measurements of stable and  locally extinguishing  hydrocarbon-fuelled jet flames", Combustion and flames,&nbsp;135, pp.&nbsp;185-190,&nbsp;2003</ref>.
Measured scalars for Sandia D Flame include temperature, mixture
fraction, N<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>,
CH<sub>4</sub>, CO, CO<sub>2</sub>, OH and NO. Experimental methods
and measurement uncertainties are outlined  in<ref name='refdesc1'/>
Spontaneous  Raman
scattering of the beams from two Nd:YAG lasers  (532  nm)  was  used  to
measure concentrations of the major  species.  The  Rayleigh  scattering
signal was converted to temperature using a species-weighted  scattering
cross section, based on the  Raman  measurements.  Linear  laser-induced
fluorescence (LIF) was used to measure OH and NO, and  the  fluorescence
signals were  corrected  on  a  shot-to-shot  basis  for  variations  in
Boltzmann fraction and collisional quenching rate. The concentration  of
CO was measured by Raman  scattering  and  by  two-photon  laser-induced
fluorescence (TPLIF).
 
 
{|align="center" border="1" width="700"
|+ align="bottom"|<b>Table EXP&nbsp;&ndash;&nbsp;A&nbsp;&nbsp;</b>Summary description of all test cases
!align="center"|Name
!align="center"|GNDPs
!align="center" colspan="2"|PDPs (Problem Definition Parameters)
!align="center" colspan="2"|MPs (Measured Parameters)
|-
|&nbsp;||align="center"|Re||align="center"|Fuel jet composition
|align="center"|Pilot flame composition||align="center"|Detailed data
|align="center" width="150"|DOAPs
|-
|valign="top"|<b>EXP1</b>||align="center" valign="top"|22400
|valign="top"|25% of methane (CH<sub>4</sub>) and 75% of air
|valign="top"|C<sub>2</sub>H<sub>2</sub>, H<sub>2</sub>, air, CO<sub>2</sub> and N<sub>2</sub>
|valign="top"|
 
<math>\langle U\rangle, \langle U_{rms}\rangle, \langle V\rangle,
\langle V_{rms}\rangle, \langle\eta\rangle,</math>
 
<math>\langle T\rangle,
\langle Y_{H_2 0}\rangle, \langle Y_{O_2}\rangle, \langle Y_{N_2}\rangle,
\langle Y_{H_2}\rangle,</math>
 
<math>\langle Y_{CO}\rangle, \langle Y_{CO_2}\rangle,
\langle Y_{CH_4}\rangle, \langle\eta_{rms}\rangle,</math>
 
<math>\langle T_{rms}\rangle, \langle Y_{{H_2O}_{rms}}\rangle,
\langle Y_{{O_2}_{rms}}\rangle,</math>
 
<math>\langle Y_{{N_2}_{rms}}\rangle,
\langle Y_{{H_2}_{rms}}\rangle, \langle Y_{{CO}_{rms}}\rangle,</math>
 
<math>\langle Y_{{CO_2}_{rms}}\rangle, \langle Y_{{CH_4}_{rms}}\rangle</math>
 
|align="center"|Axial profiles
 
''T<sub>max</sub>'' , ''z/D (T<sub>max</sub>&nbsp;)''
 
L<sub>const</sub>(&eta; , Y<sub>CH<sub>4</sub></sub> , Y<sub>O<sub>2</sub></sub>)
 
L<sub>const</sub>(Y<sub>H<sub>2</sub>O</sub> , Y<sub>CO<sub>2</sub></sub>)
 
Y<sub>H<sub>2</sub>, max</sub> , ''z/D'' (Y<sub>H<sub>2</sub>, max</sub>&nbsp;)
 
Y<sub>CO, max</sub> , ''z/D'' (Y<sub>CO, max</sub>&nbsp;)
 
RMS<sub>max</sub>
 
''z/D'' (RMS<sub>max</sub>&nbsp;)
 
Radial profiles
 
''x/D''&nbsp;=&nbsp;15, 30, 45
 
''F<sub>max</sub>'' , ''U<sub>max</sub>''
 
''r''<sub>&frac12;</sub>(''&eta;'') , ''r''<sub>&frac12;</sub>(''U''&nbsp;)
|}
 
 
{|align="center" border="1" width="700"
|+ align="bottom"|<b>Table EXP&nbsp;&ndash;&nbsp;B&nbsp;&nbsp;</b>Summary description of all measured parameters
!align="center"|MP1||align="center"|MP2||align="center"|MP3||align="center"|DOAPs or other miscellaneous data
|-
|align="center" valign="top"|''U'', ''V'', ''u''&nbsp;&prime;, ''v''&nbsp;&prime; (ms<sup>-1</sup>)
|align="center" valign="top"|''&eta;'', ''T'', ''&eta;''&nbsp;&prime;, ''T''&nbsp;&prime; (m<sup>2</sup>s<sup>-2</sup>)
|align="center"|''Y''<sub>N<sub>2</sub></sub>, RMS(''Y''<sub>N<sub>2</sub></sub>)
 
''Y''<sub>O<sub>2</sub></sub>, RMS(''Y''<sub>O<sub>2</sub></sub>)
 
''Y''<sub>H<sub>2</sub>O</sub>, RMS(''Y''<sub>H<sub>2</sub>O</sub> )
 
''Y''<sub>H<sub>2</sub></sub>, RMS(''Y''<sub>H<sub>2</sub></sub>)
 
''Y''<sub>CH<sub>4</sub></sub>, RMS(''Y''<sub>CH<sub>4</sub></sub>)
 
''Y''<sub>CO</sub>, RMS(''Y''<sub>CO</sub> )
 
''Y''<sub>CO<sub>2</sub></sub>, RMS(''Y''<sub>CO<sub>2</sub></sub>)
 
''Y''<sub>OH</sub>, RMS(''Y''<sub>OH</sub> )
 
''Y''<sub>NO</sub>, RMS(''Y''<sub>NO</sub> )
|}
 
 
==TEST CASE EXP1==
===Description of Experiment===
The Application Challenge includes just one test case,  Sandia  Flame  D
with defined Reynolds number of the fuel jet and  the  fuel  and  pilot
flame compositions as given in Table EXP-A.
 
===Boundary Data===
The inlet mean and fluctuating velocity at the distance x/D=1 from  the
burner are  shown in Fig.3. The inlet parabolic profile had  a  maximum
at the centre of the  fuel  nozzle  of  ''U<sub>max</sub>''&nbsp;=&nbsp;62&nbsp;m/s.
The  pilot  flame  bulk velocity ''U<sub>pilot</sub>''&nbsp;=&nbsp;11.4&nbsp;m/s
and the coflow  velocity ''U<sub>cfl</sub>''&nbsp;=&nbsp;0.9&nbsp;m/s.
{|border="0" align="center" cellpadding="5" cellspacing="12"
|[[Image:AC2-09_fig3a.gif|350px]]
|&nbsp;
|[[Image:AC2-09_fig3b.gif|350px]]
|-
|colspan="3" align="center"|'''Fig. 3:''' Mean and RMS inlet profiles of the axial velocity.
|}
 
===Measurement Errors===
The flow field measurement statistical errors are estimated in<ref name='refdesc1'/>
as below 5% for  the  mean  velocities  and  within  10%  for  fluctuating
components.
The scalar measurement errors are estimated and analyzed
in<ref name='refdesc2'>'''Barlow R.S., Frank J.H.''', Proc.&nbsp;Comb.&nbsp;Inst.,&nbsp;27:1087,1998</ref>.
The relative uncertainty (not  including  statistical  noise  or  potential
effects of spatial averaging) is estimated to  be  within  2%  for  the
Raman measurements, 5% for OH, 5% for CO, and 10% for NO.
 
===Measured Data===
The velocity data (in ASCII format) can be obtained by contacting Prof. Andreas Dreizler,
TU Darmstadt (dreizler@csi.tu-darmstadt.de).
 
The scalar data are available at http://www.sandia.gov/TNF/DataArch/FlameD.html
 
===References===
<references/>
<br/>
----
{{ACContribs
|authors=Andrzej Boguslawski, Artur Tyliszczak
|organisation=Częstochowa University of Technology
}}
{{ACHeader
|area=2
|number=09
}}
 
 
© copyright ERCOFTAC 2011

Latest revision as of 15:42, 11 February 2017

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice

SANDIA Flame D

Application Challenge AC2-09   © copyright ERCOFTAC 2024

Overview of Tests

The velocity measurements were performed with two-component fiber-optic laser Doppler anemometer (Dantec). All the details of the flow field measuring techniques applied in Sandia Flame D experiment are explained in[1]. Measured scalars for Sandia D Flame include temperature, mixture fraction, N2, O2, H2O, H2, CH4, CO, CO2, OH and NO. Experimental methods and measurement uncertainties are outlined in[1] Spontaneous Raman scattering of the beams from two Nd:YAG lasers (532 nm) was used to measure concentrations of the major species. The Rayleigh scattering signal was converted to temperature using a species-weighted scattering cross section, based on the Raman measurements. Linear laser-induced fluorescence (LIF) was used to measure OH and NO, and the fluorescence signals were corrected on a shot-to-shot basis for variations in Boltzmann fraction and collisional quenching rate. The concentration of CO was measured by Raman scattering and by two-photon laser-induced fluorescence (TPLIF).


Table EXP – A  Summary description of all test cases
Name GNDPs PDPs (Problem Definition Parameters) MPs (Measured Parameters)
  Re Fuel jet composition Pilot flame composition Detailed data DOAPs
EXP1 22400 25% of methane (CH4) and 75% of air C2H2, H2, air, CO2 and N2

Axial profiles

Tmax , z/D (Tmax )

Lconst(η , YCH4 , YO2)

Lconst(YH2O , YCO2)

YH2, max , z/D (YH2, max )

YCO, max , z/D (YCO, max )

RMSmax

z/D (RMSmax )

Radial profiles

x/D = 15, 30, 45

Fmax , Umax

r½(η) , r½(U )


Table EXP – B  Summary description of all measured parameters
MP1 MP2 MP3 DOAPs or other miscellaneous data
U, V, u ′, v ′ (ms-1) η, T, η ′, T ′ (m2s-2) YN2, RMS(YN2)

YO2, RMS(YO2)

YH2O, RMS(YH2O )

YH2, RMS(YH2)

YCH4, RMS(YCH4)

YCO, RMS(YCO )

YCO2, RMS(YCO2)

YOH, RMS(YOH )

YNO, RMS(YNO )


TEST CASE EXP1

Description of Experiment

The Application Challenge includes just one test case, Sandia Flame D with defined Reynolds number of the fuel jet and the fuel and pilot flame compositions as given in Table EXP-A.

Boundary Data

The inlet mean and fluctuating velocity at the distance x/D=1 from the burner are shown in Fig.3. The inlet parabolic profile had a maximum at the centre of the fuel nozzle of Umax = 62 m/s. The pilot flame bulk velocity Upilot = 11.4 m/s and the coflow velocity Ucfl = 0.9 m/s.

AC2-09 fig3a.gif   AC2-09 fig3b.gif
Fig. 3: Mean and RMS inlet profiles of the axial velocity.

Measurement Errors

The flow field measurement statistical errors are estimated in[1] as below 5% for the mean velocities and within 10% for fluctuating components. The scalar measurement errors are estimated and analyzed in[2]. The relative uncertainty (not including statistical noise or potential effects of spatial averaging) is estimated to be within 2% for the Raman measurements, 5% for OH, 5% for CO, and 10% for NO.

Measured Data

The velocity data (in ASCII format) can be obtained by contacting Prof. Andreas Dreizler, TU Darmstadt (dreizler@csi.tu-darmstadt.de).

The scalar data are available at http://www.sandia.gov/TNF/DataArch/FlameD.html

References

  1. 1.0 1.1 1.2 Schneider Ch., Dreizler A., Janicka J., Hassel E.P., "Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames", Combustion and flames, 135, pp. 185-190, 2003
  2. Barlow R.S., Frank J.H., Proc. Comb. Inst., 27:1087,1998




Contributed by: Andrzej Boguslawski, Artur Tyliszczak — Częstochowa University of Technology

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice


© copyright ERCOFTAC 2011