UFR Index: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 51: Line 51:
| CFD Software GmbH and Technische Universitaet Berlin
| CFD Software GmbH and Technische Universitaet Berlin
|- style="background-color:LightGrey;"
|- style="background-color:LightGrey;"
| a|b| Michael Strelets
| || Michael Strelets
| New Technologies and Services LLC (NTS) and St.-Petersburg State Polytechnic University
| New Technologies and Services LLC (NTS) and St.-Petersburg State Polytechnic University



Revision as of 11:52, 12 February 2017

Flow Type UFR number Underlying Flow Regime Contributor Organisation
Free Flows
1-01 Underexpanded jet Christopher Lea UK Health and Safety Laboratory
1-02 Blade tip and tip clearance vortex flow Michael Casey Sulzer Innotec AG
1-05 Jet in a Cross Flow Peter Storey ABB Alstom Power UK
1-06 Axisymmetric buoyant far-field plume Simon Gant UK Health & Safety Laboratory
1-07 Unsteady near-field plume Simon Gant UK Health & Safety Laboratory
Flows around Bodies
2-01 Flow behind a blunt trailing edge Charles Hirsch Vrije Universiteit Brussel
2-02 Flow past cylinder Wolfgang Rodi Universität Karlsruhe
2-03 Flow around oscillating airfoil Joanna Szmelter Cranfield University
2-04 Flow around (airfoils and) blades (subsonic) K. Papailiou NTUA
2-05 Flow around airfoils (and blades) A-airfoil (Ma=0.15, Re/m=2x10^6) Peter Voke University of Surrey
2-06 Flow around (airfoils and) blades (transonic) Jaromir Prihoda Czech Academy of Sciences
2-07 3D flow around blades Dirk Wilhelm ALSTOM Power (Switzerland) Ltd
2-10 Flow Around Finite-Height Circular Cylinder G. Palau-Salvador, W. Rodi Universidad Politecnica de Valencia, Karlsruhe Institute of Technology
2-11 High Reynolds Number Flow around Airfoil in Deep Stall Charles Mockett CFD Software GmbH and Technische Universitaet Berlin
Michael Strelets New Technologies and Services LLC (NTS) and St.-Petersburg State Polytechnic University
2-12 Turbulent Flow Past Two-Body Configurations Star red.jpg A. Garbaruk, M. Shur and M. Strelets New Technologies and Services LLC (NTS) and St.-Petersburg State Polytechnic University
2-13 Fluid-structure interaction in turbulent flow past cylinder/plate configuration I (First swiveling mode)Star red.jpg Michael Breuer Helmut-Schmidt Universität Hamburg
2-14 Fluid-structure interaction in turbulent flow past cylinder/plate configuration II (Second swiveling mode)Star red.jpg Andreas Kalmbach, Guillaume De Nayer, Michael Breuer Helmut-Schmidt Universität Hamburg
2-15 Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder (BARC) Luca Bruno, Maria Vittoria Salvetti Politecnico di Torino, Università di Pisa
Semi-confined Flows
3-01 Boundary layer interacting with wakes under adverse pressure gradient - NLR 7301 high lift configuration Jan Vos CFS Engineering SA
3-03 2D Boundary layers with pressure gradients (A) Florian Menter AEA Technology
3-04 Laminar-turbulent boundary layer transition Andrzej Boguslawski Technical University of Czestochowa
3-05 Shock/boundary-layer interaction (on airplanes) Anthony Hutton Qinetiq
3-06 Natural and mixed convection boundary layers on vertical heated walls (A) André Latrobe CEA / DRN / Department de Thermohydraulique
3-07 Natural and mixed convection boundary layers on vertical heated walls (B) Mike Rabbitt British Energy
3-08 3D boundary layers under various pressure gradients, including severe adverse pressure gradient causing separation Pietro Catalano CIRA
3-09 Impinging jet Jean-Paul Bonnet, Remi Manceau Université de Poitiers
3-10 The plane wall jet Star red.jpg Jan Eriksson, Rolf Karlsson Vattenfall Utveckling AB
3-11 Pipe expansion (with heat transfer) Jeremy Noyce Magnox Electric
3-12 Stagnation point flow Beat Ribi MAN Turbomaschinen AG Schweiz
3-13 Flow over an isolated hill (without dispersion) Frederic Archambeau EDF - R&D Division
3-14 Flow over surface-mounted cube/rectangular obstacles Star red.jpg Ian Castro University of Southampton
3-15 2D flow over backward facing step Arnau Duran CIMNE
3-18 2D Boundary layers with pressure gradients (B) Fred Mendonca Computational Dynamics Ltd
3-30 2D Periodic Hill Flow Star red.jpg Christoph Rapp, Michael Breuer, Michael Manhart, Nikolaus Peller Technische Universität München, Helmut-Schmidt Universität Hamburg
3-31 Flow over curved backward-facing step Star red.jpg Sylvain Lardeau CD-adapco, London, UK
3-32 Planar shock-wave boundary-layer interaction Star red.jpg Jean-Paul Dussauge, P. Dupont, N. Sandham, E. Garnier Aix-Marseille Université and Centre National de la Recherche Scientifique UM 7343, University of Southampton, ONERA/DAAP
3-33 Turbulent flow past a wall-mounted hemisphere Star red.jpg Jens Nikolas Wood, Guillaume De Nayer, Stephan Schmidt, Michael Breuer Helmut-Schmidt Universität Hamburg
Confined Flows
4-02 Confined coaxial swirling jets Stefan Hohmann MTU Aero Engines
4-03 Pipe flow - rotating Paolo Orlandi, Stefano Leonardi Universita di Roma 'La Sapienza'
4-04 Flow in a curved rectangular duct - non rotating Lewis Davenport Rolls-Royce Marine Power, Engineering & Technology Division
4-05 Curved passage flow Star red.jpg Nouredine Hakimi NUMECA International
4-06 Swirling diffuser flow Chris Carey Fluent Europe Ltd
4-08 Orifice/deflector flow Star red.jpg Martin Sommerfeld Martin-Luther-Universitat Halle-Wittenberg
4-09 Confined buoyant plume Isabelle Lavedrine, Darren Woolf Arup
4-10 Natural convection in simple closed cavity Nicholas Waterson Mott MacDonald Ltd
4-11 Simple room flow Steve Gilham, Athena Scaperdas Atkins
4-13 Compression of vortex in cavity Afif Ahmed, Emma Briec RENAULT
4-14 Flow in pipes with sudden contraction Star red.jpg Francesca Iudicello ESDU
4-16 Flow in a 3D diffuser Star red.jpg Suad Jakirlić, Gisa John-Puthenveettil Technische Universität Darmstadt
4-18 Flow and heat transfer in a pin-fin array Star red.jpg Sofiane Benhamadouche EDF
4-19 Converging-diverging transonic diffuser Star red.jpg Z. Vlahostergios, K. Yakinthos Dept. of Mechanical Engineering, Aristotle University of Thessaloniki, Greece