UFR 3-33 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
mNo edit summary
(First version of the references (copy and adapt from the paper wood et al. FTC))
Line 103: Line 103:
* Tamai, N., Asaeda, T., Tanaka, N., 1987. Vortex structures around a hemispheric hump. Boundary-Layer Meteorology 39 (3), 301-314.
* Tamai, N., Asaeda, T., Tanaka, N., 1987. Vortex structures around a hemispheric hump. Boundary-Layer Meteorology 39 (3), 301-314.


* Tamura, T., Kuwahara, K., Suzuki, M.: Numerical study of wind pressures on a domed roof and near wake flows. Journal of Wind Engineering and Industrial Aerodynamics \textbf{36}, 1001--1010 (1990)
* Tamura, T., Kuwahara, K., Suzuki, M., 1990. Numerical study of wind pressures on a domed roof and near wake flows. Journal of Wind Engineering and Industrial Aerodynamics 36, 1001-1010.


* Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.: Time-averaged aerodynamic forces acting on a hemisphere immersed in a turbulent boundary. Journal of Wind Engineering and Industrial Aerodynamics \textbf{9}(3), 257--273 (1982)
* Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.,1982. Time-averaged aerodynamic forces acting on a hemisphere immersed in a turbulent boundary. Journal of Wind Engineering and Industrial Aerodynamics 9 (3), 257-273.


* Tavakol, M.M., Abouali, O., Yaghoubi, M.: Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling \textbf{39}(13), 3596--3618 (2015)
* Tavakol, M.M., Abouali, O., Yaghoubi, M., 2015. Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling 39 (13), 3596-3618.


* Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M.: Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science \textbf{34}(5), 538--553 (2010)
* Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M., 2010. Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science 34 (5), 538-553.


* Taylor, T.J.: Wind pressures on a hemispherical dome. Journal of Wind Engineering and Industrial Aerodynamics \textbf{40}(2), 199--213 (1992)
* Taylor, T.J., 1992. Wind pressures on a hemispherical dome. Journal of Wind Engineering and Industrial Aerodynamics 40 (2), 199-213.


* Toy, N., Moss, W.D., Savory, E.: Wind tunnel studies on a dome in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics \textbf{11}(1), 201--212 (1983)
* Toy, N., Moss, W.D., Savory, E., 1983. Wind tunnel studies on a dome in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 11 (1), 201-212.


* Wilcox, D.C.: Turbulence Modeling for {CFD}, second edn. DCW {I}ndustries, Inc., La Ca\~nada CA (1998)
* Wilcox, D.C., 1998. Turbulence Modeling for CFD, second edn. DCW Industries, Inc., La Canada CA.


* Yaghoubi, M.A.: Air flow patterns around domed roof buildings. Renewable {E}nergy \textbf{1}(3), 345--350 (1991)
* Yaghoubi, M.A., 1991. Air flow patterns around domed roof buildings. Renewable Energy 1 (3), 345-350.


* Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids \textbf{4}(7), 1510--1520 (1992)
* Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G., 1992. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 4 (7), 1510-1520.


<br/>
<br/>

Revision as of 16:34, 19 January 2016

Turbulent flow past a smooth and rigid wall-mounted hemisphere

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Semi-confined flows

Underlying Flow Regime 3-33

References

  • Acarlar, M.S., Smith, C.R., 1987. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. Journal of Fluid Mechanics 175, 1-41.
  • Adrian, R.J., Yao, C.S., 1986. Power spectra of fluid velocities measured by laser-Doppler velocimetry. Experiments in Fluids 5 (1), 17-28.
  • Baker, C.J., 1980. The turbulent horseshoe vortex. Journal of Wind Engineering and Industrial Aerodynamics 6 (1), 9-23.
  • Benedict, L.H., Nobach, H., Tropea, C., 2000. Estimation of turbulent velocity spectra from laser-Doppler data. Measurement Science and Technology 11 (8), 1089-1104.
  • Bennington, J.L., 2004. Effects of various shaped roughness elements in two-dimensional high Reynolds number turbulent boundary layers. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • Breuer, M., De Nayer, G., M\"unsch, M., Gallinger, T., W\"uchner, R., 2012. Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. Journal of Fluids and Structures 29, 107-130.
  • Broersen, P.M.T., de Waele, S., Bos, R., 2000. The accuracy of time series analysis for laser-Doppler velocimetry. In: Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal.
  • Byun, G., Simpson, R.L., 2006. Structure of three-dimensional separated flow on an axisymmetric bump. AIAA Journal 44 (5), 999-1008.
  • Byun, G., Simpson, R.L., 2010. Surface-pressure fluctuations from separated flow over an axisymmetric bump. AIAA Journal 48 (10), 2397-2405.
  • Cheng, C.M., Fu, C.L., 2010. Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics 98 (6), 328-344.
  • Counihan, J., 1969. An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmospheric Environment (1967) 3 (2), 197-214.
  • Counihan, J., 1975. Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972. Atmospheric Environment (1967) 9 (10), 871-905.
  • Durst, F., Sch\"afer, M., 1996. A parallel block-structured multigrid method for the prediction of incompressible flows. Int. Journal for Numerical Methods in Fluids 22 (6), 549-565.
  • Durst, F., Sch\"afer, M., Wechsler, K., 1996. Efficient simulation of incompressible viscous flows on parallel computers. In: E.H. Hirschel (ed.) Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, vol. 52 (1), pp. 87-101. Vieweg.
  • Ferziger, J.H., Peri{\'c}, M., 2002. Computational Methods for Fluid Dynamics, third edn. Springer Berlin.
  • Garc\'ia-Villalba, M., Li, N., Rodi, W., Leschziner, M.A., 2009. Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill. Journal of Fluid Mechanics 627, 55-96.
  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H., 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3, 1760-1765.
  • Jacobs, W., 1938. Str{\"o}mung hinter einem einzelnen Rauhigkeitselement. Ingenieur-Archiv 9 (5), 343-355.
  • Kharoua, N., Khezzar, L., 2013. Large-eddy simulation study of turbulent flow around smooth and rough domes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (12), 2686-2700.
  • Khosla, P.K., Rubin, S.G., 1974. A diagonally dominant second-order accurate implicit scheme. Computers & Fluids 2 (2), 207-209.
  • Kim, W.W., Menon, S., 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA Paper No. AIAA-97-0210.
  • Klein, M., Sadiki, A., Janicka, J., 2003. A digital filter based generation of inflow data for spatially-developing direct numerical or large-eddy simulations. Journal of Computational Physics 186, 652-665.
  • Lawson, T.V., 1968. Methods of producing velocity profiles in wind tunnels. Atmospheric Environment (1967) 2 (1), 73-76.
  • Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A 4, 633-635.
  • Lund, T.S., Wu, X., Squires, K.D., 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics 140, 223-258.
  • Maher, F.J., 1965. Wind loads on basic dome shapes. Journal of the Structural Division 91 (3), 219-228.
  • Manhart, M., 1998. Vortex shedding from a hemisphere in a turbulent boundary layer. Theoretical and Computational Fluid Dynamics 12 (1), 1-28.
  • Martinuzzi, R., Tropea, C., 1993. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Journal of Fluids Engineering 115 (1), 85-92.
  • Meroney, R.N., Letchford, C.W., Sarkar, P.P., 2002. Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer. Wind and Structures 5 (2--4), 347-358.
  • Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62 (3), 183-200.
  • Okamoto, S., Sunabashiri, Y., 1992. Vortex shedding from a circular cylinder of finite length placed on a ground plane. Journal of Fluids Engineering 114 (4), 512-521.
  • Pattenden, R.J., Turnock, S.R., Zhang, X., 2005. Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Experiments in Fluids 39 (1), 10-21.
  • Piomelli, U., Chasnov, J.R., 1996. Large-eddy simulations: Theory and applications. In: M. Hallb\"ack, D. Henningson, A. Johansson, P. Alfredson (eds.) Turbulence and Transition Modeling, pp. 269-331. Kluwer.
  • Rhie, C.M., Chow, W.L., 1983. Numerical study of the turbulent flow past an airfoil with trailing-edge separation. AIAA Journal 21 (11), 1525-1532.
  • Sakamoto, H., Arie, M., 1983. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. Journal of Fluid Mechanics 126, 147-165.
  • Sargison, J.E., Walker, G.J., Bond, V., Chevalier, G.,2004. Experimental review of devices to artificially thicken wind tunnel boundary layers. In: M. Behnia, W. Lin, G.D. McBain (eds.) Proceedings of the Fifteenth Australasian Fluid Mechanics Conference (CD-ROM). The University of Sydney, Sydney, Australia. AFMC00091
  • Savory, E., Toy, N., 1986. Hemisphere and hemisphere-cylinders in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 23, 345-364.
  • Savory, E., Toy, N., 1988. The separated shear layers associated with hemispherical bodies in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 28 (1), 291-300.
  • Scheit, C., Nusser, K., Hager, G., Becker, S., Zeiser, T., Wellein, G., 2014. Optimizing the FASTEST-3D CFD code for massive parallelism. In: 26th Int. Conf. on Comp. Fluid Dynamics, ParCFD 2014. Norway, Trondheim.
  • Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S., 2009. Turbulent boundary layers up to Re_\theta= 2500 studied through simulation and experiment. Physics of Fluids 21 (5), 51,702.
  • Schmidt, S., Breuer, M., 2015. Extended synthetic turbulence inflow generator within a hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded flows. Flow, Turbulence and Combustion 95 (4), 669-707.
  • Schmidt, S., Breuer, M., 2016. Application and extension of a synthetic turbulence inflow generator within a hybrid LES-URANS methodology. In: J. Fr\"ohlich, H. Kuerten, B.J. Geurts, V. Armenio (eds.) ERCOFTAC Series, Direct and Large-Eddy Simulation X, 10th Int. ERCOFTAC Workshop on Direct and Large-Eddy Simulation: DLES-10, Limassol, Cyprus, May 27-29, 2015. Springer Science+Business Media B.V. To appear
  • Sergent, E., 2002. Vers une méthodologie de couplage entre la simulation des grandes échelles et les modèles statistiques. Ph.D. thesis, Ecully, Ecole Centrale de Lyon.
  • Simpson, R.L., Long, C.H., Byun, G., 2002. Study of vortical separation from an axisymmetric hill. International Journal of Heat and Fluid Flow 23 (5), 582-591.
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations I: The basic experiment. Monthly Weather Review 91 (3), 99-165.
  • Spalart, P.R., Allmaras, S.R., 1992. A one-equation turbulence model for aerodynamic flows. AIAA Journal 94, 92-439.
  • Tamai, N., Asaeda, T., Tanaka, N., 1987. Vortex structures around a hemispheric hump. Boundary-Layer Meteorology 39 (3), 301-314.
  • Tamura, T., Kuwahara, K., Suzuki, M., 1990. Numerical study of wind pressures on a domed roof and near wake flows. Journal of Wind Engineering and Industrial Aerodynamics 36, 1001-1010.
  • Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.,1982. Time-averaged aerodynamic forces acting on a hemisphere immersed in a turbulent boundary. Journal of Wind Engineering and Industrial Aerodynamics 9 (3), 257-273.
  • Tavakol, M.M., Abouali, O., Yaghoubi, M., 2015. Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling 39 (13), 3596-3618.
  • Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M., 2010. Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science 34 (5), 538-553.
  • Taylor, T.J., 1992. Wind pressures on a hemispherical dome. Journal of Wind Engineering and Industrial Aerodynamics 40 (2), 199-213.
  • Toy, N., Moss, W.D., Savory, E., 1983. Wind tunnel studies on a dome in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 11 (1), 201-212.
  • Wilcox, D.C., 1998. Turbulence Modeling for CFD, second edn. DCW Industries, Inc., La Canada CA.
  • Yaghoubi, M.A., 1991. Air flow patterns around domed roof buildings. Renewable Energy 1 (3), 345-350.
  • Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G., 1992. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 4 (7), 1510-1520.




Contributed by: Jens Nikolas Wood, Guillaume De Nayer, Stephan Schmidt, Michael Breuer — Helmut-Schmidt Universität Hamburg

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024