CFD Simulations AC2-09: Difference between revisions

From KBwiki
Jump to navigation Jump to search
Line 20: Line 20:
\frac{\partial\rho Y_k}{\partial t}+\frac{\partial\rho u_iY_k}{\partial x_i}=
\frac{\partial\rho Y_k}{\partial t}+\frac{\partial\rho u_iY_k}{\partial x_i}=
\frac{\partial}{\partial x_i}\left(\rho D_k\frac{\partial Y_k}{\partial x_i}\right)
\frac{\partial}{\partial x_i}\left(\rho D_k\frac{\partial Y_k}{\partial x_i}\right)
+\dot{\omega_k}</math> for <math>k=1,2,\dots,N</math>
+\dot{\omega_k}\text{for\ }k=1,2,\dots,N</math>
</center>
</center>



Revision as of 10:34, 28 April 2011


Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice

SANDIA Flame D

Application Challenge AC2-09   © copyright ERCOFTAC 2024

Overview of CFD Simulations

SIMULATION CASE CFD1

Solution Strategy

Computational Domain

Boundary Conditions

Application of Physical Models

Failed to parse (syntax error): {\displaystyle \frac{\partial\rho Y_k}{\partial t}+\frac{\partial\rho u_iY_k}{\partial x_i}= \frac{\partial}{\partial x_i}\left(\rho D_k\frac{\partial Y_k}{\partial x_i}\right) +\dot{\omega_k}\text{for\ }k=1,2,\dots,N}

Numerical Accuracy

CFD Results

References

SIMULATION CASE CFD2

(as per CFD 1)



Contributed by: Andrzej Boguslawski — Technical University of Częstochowa

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice


© copyright ERCOFTAC 2024