UFR 3-33 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
m (Dave.Ellacott moved page SilverP:UFR 3-33 References to UFR 3-33 References)
 
(31 intermediate revisions by 3 users not shown)
Line 1: Line 1:
=Turbulent flow past a smooth and rigid wall-mounted hemisphere=
{{UFRHeader
{{UFRHeader
|area=3
|area=3
Line 5: Line 4:
}}
}}
__NOTOC__
__NOTOC__
==Semi-confined flows==
 
===Underlying Flow Regime 3-33===
= References =
= References =
{{Demo_UFR_References}}


* Reference 1
* Acarlar, M.S., Smith, C.R., 1987. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. Journal of Fluid Mechanics 175, 1-41.
* Reference 2 ...
 
* Adrian, R.J., Yao, C.S., 1986. Power spectra of fluid velocities measured by laser-Doppler velocimetry. Experiments in Fluids 5 (1), 17-28.
 
* Baker, C.J., 1980. The turbulent horseshoe vortex. Journal of Wind Engineering and Industrial Aerodynamics 6 (1), 9-23.
 
* Benedict, L.H., Nobach, H., Tropea, C., 2000. Estimation of turbulent velocity spectra from laser-Doppler data. Measurement Science and Technology 11 (8), 1089-1104.
 
* Bennington, J.L., 2004. Effects of various shaped roughness elements in two-dimensional high Reynolds number turbulent boundary layers. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
 
* Breuer, M., 2002. Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen, Germany.
 
* Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner, R., 2012. Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. Journal of Fluids and Structures 29, 107-130.
 
* Broersen, P.M.T., de Waele, S., Bos, R., 2000. The accuracy of time series analysis for laser-Doppler velocimetry. In: Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal.
 
* Byun, G., Simpson, R.L., 2006. Structure of three-dimensional separated flow on an axisymmetric bump. AIAA Journal 44 (5), 999-1008.
 
* Byun, G., Simpson, R.L., 2010. Surface-pressure fluctuations from separated flow over an axisymmetric bump. AIAA Journal 48 (10), 2397-2405.
 
* Cheng, C.M., Fu, C.L., 2010. Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics 98 (6), 328-344.
 
* Counihan, J., 1969. An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmospheric Environment (1967) 3 (2), 197-214.
 
* Counihan, J., 1975. Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972. Atmospheric Environment (1967) 9 (10), 871-905.
 
* Druault, P., Lardeau, S., Bonnet, J.-P., Coifft, F., Lamballais, E., Largeau, J. F., Perret, L., 2004, Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J., vol. 42 (3) , pp. 447-456.
 
* Durst, F., Schäfer, M., 1996. A parallel block-structured multigrid method for the prediction of incompressible flows. Int. Journal for Numerical Methods in Fluids 22 (6), 549-565.
 
* Durst, F., Schäfer, M., Wechsler, K., 1996. Efficient simulation of incompressible viscous flows on parallel computers. In: E.H. Hirschel (ed.) Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, vol. 52 (1), pp. 87-101. Vieweg.
 
* Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics, third edn. Springer Berlin.
 
* Garcia-Villalba, M., Li, N., Rodi, W., Leschziner, M.A., 2009. Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill. Journal of Fluid Mechanics 627, 55-96.
 
* Germano, M., Piomelli, U., Moin, P., Cabot, W.H., 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3, 1760-1765.
 
* Jacobs, W., 1938. Strömung hinter einem einzelnen Rauhigkeitselement. Ingenieur-Archiv 9 (5), 343-355.
 
* Kharoua, N., Khezzar, L., 2013. Large-eddy simulation study of turbulent flow around smooth and rough domes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (12), 2686-2700.
 
* Khosla, P.K., Rubin, S.G., 1974. A diagonally dominant second-order accurate implicit scheme. Computers & Fluids 2 (2), 207-209.
 
* Kim, W.W., Menon, S., 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA Paper No. AIAA-97-0210.
 
* Klein, M., Sadiki, A., Janicka, J., 2003. A digital filter based generation of inflow data for spatially-developing direct numerical or large-eddy simulations. Journal of Computational Physics 186, 652-665.
 
* Knupp, P.M., 2003. Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design 39, 217-241.
 
* Lawson, T.V., 1968. Methods of producing velocity profiles in wind tunnels. Atmospheric Environment (1967) 2 (1), 73-76.
 
* Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A 4, 633-635.
 
* Maher, F.J., 1965. Wind loads on basic dome shapes. Journal of the Structural Division 91 (3), 219-228.
 
* Manhart, M., 1998. Vortex shedding from a hemisphere in a turbulent boundary layer. Theoretical and Computational Fluid Dynamics 12 (1), 1-28.
 
* Martinuzzi, R., Tropea, C., 1993. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Journal of Fluids Engineering 115 (1), 85-92.
 
* Meroney, R.N., Letchford, C.W., Sarkar, P.P., 2002. Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer. Wind and Structures 5 (2-4), 347-358.
 
* Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62 (3), 183-200.
 
* Okamoto, S., Sunabashiri, Y., 1992. Vortex shedding from a circular cylinder of finite length placed on a ground plane. Journal of Fluids Engineering 114 (4), 512-521.
 
* Pattenden, R.J., Turnock, S.R., Zhang, X., 2005. Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Experiments in Fluids 39 (1), 10-21.
 
* Piomelli, U., Chasnov, J.R., 1996. Large-eddy simulations: Theory and applications. In: M. Hallbäck, D. Henningson, A. Johansson, P. Alfredson (eds.) Turbulence and Transition Modeling, pp. 269-331. Kluwer.
 
* Rhie, C.M., Chow, W.L., 1983. Numerical study of the turbulent flow past an airfoil with trailing-edge separation. AIAA Journal 21 (11), 1525-1532.
 
* Sakamoto, H., Arie, M., 1983. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. Journal of Fluid Mechanics 126, 147-165.
 
* Savory, E., Toy, N., 1986. Hemisphere and hemisphere-cylinders in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 23, 345-364.
 
* Savory, E., Toy, N., 1988. The separated shear layers associated with hemispherical bodies in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 28 (1), 291-300.
 
* Scheit, C., Nusser, K., Hager, G., Becker, S., Zeiser, T., Wellein, G., 2014. Optimizing the FASTEST-3D CFD code for massive parallelism. In: 26th Int. Conf. on Comp. Fluid Dynamics, ParCFD 2014. Norway, Trondheim.
 
* Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S., 2009. Turbulent boundary layers up to <math>Re_\theta= 2500</math> studied through simulation and experiment. Physics of Fluids 21 (5), 51,702.
 
* Schmidt, S., Breuer, M., 2015. Extended synthetic turbulence inflow generator within a hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded flows. Flow, Turbulence and Combustion 95 (4), 669-707.
 
* Schmidt, S., Breuer, M., 2016. Application and extension of a synthetic turbulence inflow generator within a hybrid LES-URANS methodology. In: J. Fröhlich, H. Kuerten, B.J. Geurts, V. Armenio (eds.) ERCOFTAC Series, Direct and Large-Eddy Simulation X, 10th Int. ERCOFTAC Workshop on Direct and Large-Eddy Simulation: DLES-10, Limassol, Cyprus, May 27-29, 2015. Springer Science+Business Media B.V. To appear
 
* Schmidt, S., Breuer, M., 2016.  Source term based synthetic turbulence inflow generator for eddy–resolving predictions of an airfoil flow including a laminar separation bubble. in preparation.
 
* Sergent, E., 2002. Vers une méthodologie de couplage entre la simulation des grandes échelles et les modèles statistiques. Ph.D. thesis, Ecully, Ecole Centrale de Lyon.
 
* Simpson, R.L., Long, C.H., Byun, G., 2002. Study of vortical separation from an axisymmetric hill. International Journal of Heat and Fluid Flow 23 (5), 582-591.
 
* Smagorinsky, J., 1963: General circulation experiments with the primitive equations I: The basic experiment. Monthly Weather Review 91 (3), 99-165.
 
* Spalart, P.R., Allmaras, S.R., 1992. A one-equation turbulence model for aerodynamic flows. AIAA Journal 94, 92-439.
 
* Tamai, N., Asaeda, T., Tanaka, N., 1987. Vortex structures around a hemispheric hump. Boundary-Layer Meteorology 39 (3), 301-314.
 
* Tamura, T., Kuwahara, K., Suzuki, M., 1990. Numerical study of wind pressures on a domed roof and near wake flows. Journal of Wind Engineering and Industrial Aerodynamics 36, 1001-1010.
 
* Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.,1982. Time-averaged aerodynamic forces acting on a hemisphere immersed in a turbulent boundary. Journal of Wind Engineering and Industrial Aerodynamics 9 (3), 257-273.
 
* Tavakol, M.M., Abouali, O., Yaghoubi, M., 2015. Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling 39 (13), 3596-3618.
 
* Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M., 2010. Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science 34 (5), 538-553.
 
* Taylor, T.J., 1992. Wind pressures on a hemispherical dome. Journal of Wind Engineering and Industrial Aerodynamics 40 (2), 199-213.
 
* Toy, N., Moss, W.D., Savory, E., 1983. Wind tunnel studies on a dome in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 11 (1), 201-212.
 
* Wilcox, D.C., 1998. Turbulence Modeling for CFD, second edn. DCW Industries, Inc., La Canada CA.
 
<!--* Wood, J.N., De Nayer, G., Schmidt, S., Breuer, M., 2016. Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere. Journal of Flow, Turbulence and Combustion, DOI 10.1007/s10494-015-9690-5.-->
* Wood, J.N., De Nayer, G., Schmidt, S., Breuer, M., 2016. Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere. Flow, Turbulence and Combustion 97 (1), 79-119.
 
* Yaghoubi, M.A., 1991. Air flow patterns around domed roof buildings. Renewable Energy 1 (3), 345-350.
 
* Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G., 1992. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 4 (7), 1510-1520.
 
<!--
* Lund, T.S., Wu, X., Squires, K.D., 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics 140, 223-258.
 
* Sargison, J.E., Walker, G.J., Bond, V., Chevalier, G.,2004. Experimental review of devices to artificially thicken wind tunnel boundary layers. In: M. Behnia, W. Lin, G.D. McBain (eds.) Proceedings of the Fifteenth Australasian Fluid Mechanics Conference (CD-ROM). The University of Sydney, Sydney, Australia. AFMC00091-->
 
<br/>
<br/>
----
----
{{ACContribs
{{ACContribs
|authors=Michael Breuer
|authors=Jens Nikolas Wood, Guillaume De Nayer, Stephan Schmidt, Michael Breuer
|organisation=Helmut-Schmidt Universität Hamburg
|organisation=Helmut-Schmidt Universität Hamburg
}}
}}

Latest revision as of 13:50, 12 February 2017

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


References

  • Acarlar, M.S., Smith, C.R., 1987. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. Journal of Fluid Mechanics 175, 1-41.
  • Adrian, R.J., Yao, C.S., 1986. Power spectra of fluid velocities measured by laser-Doppler velocimetry. Experiments in Fluids 5 (1), 17-28.
  • Baker, C.J., 1980. The turbulent horseshoe vortex. Journal of Wind Engineering and Industrial Aerodynamics 6 (1), 9-23.
  • Benedict, L.H., Nobach, H., Tropea, C., 2000. Estimation of turbulent velocity spectra from laser-Doppler data. Measurement Science and Technology 11 (8), 1089-1104.
  • Bennington, J.L., 2004. Effects of various shaped roughness elements in two-dimensional high Reynolds number turbulent boundary layers. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • Breuer, M., 2002. Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen, Germany.
  • Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner, R., 2012. Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. Journal of Fluids and Structures 29, 107-130.
  • Broersen, P.M.T., de Waele, S., Bos, R., 2000. The accuracy of time series analysis for laser-Doppler velocimetry. In: Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal.
  • Byun, G., Simpson, R.L., 2006. Structure of three-dimensional separated flow on an axisymmetric bump. AIAA Journal 44 (5), 999-1008.
  • Byun, G., Simpson, R.L., 2010. Surface-pressure fluctuations from separated flow over an axisymmetric bump. AIAA Journal 48 (10), 2397-2405.
  • Cheng, C.M., Fu, C.L., 2010. Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics 98 (6), 328-344.
  • Counihan, J., 1969. An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmospheric Environment (1967) 3 (2), 197-214.
  • Counihan, J., 1975. Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972. Atmospheric Environment (1967) 9 (10), 871-905.
  • Druault, P., Lardeau, S., Bonnet, J.-P., Coifft, F., Lamballais, E., Largeau, J. F., Perret, L., 2004, Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J., vol. 42 (3) , pp. 447-456.
  • Durst, F., Schäfer, M., 1996. A parallel block-structured multigrid method for the prediction of incompressible flows. Int. Journal for Numerical Methods in Fluids 22 (6), 549-565.
  • Durst, F., Schäfer, M., Wechsler, K., 1996. Efficient simulation of incompressible viscous flows on parallel computers. In: E.H. Hirschel (ed.) Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, vol. 52 (1), pp. 87-101. Vieweg.
  • Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics, third edn. Springer Berlin.
  • Garcia-Villalba, M., Li, N., Rodi, W., Leschziner, M.A., 2009. Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill. Journal of Fluid Mechanics 627, 55-96.
  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H., 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3, 1760-1765.
  • Jacobs, W., 1938. Strömung hinter einem einzelnen Rauhigkeitselement. Ingenieur-Archiv 9 (5), 343-355.
  • Kharoua, N., Khezzar, L., 2013. Large-eddy simulation study of turbulent flow around smooth and rough domes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (12), 2686-2700.
  • Khosla, P.K., Rubin, S.G., 1974. A diagonally dominant second-order accurate implicit scheme. Computers & Fluids 2 (2), 207-209.
  • Kim, W.W., Menon, S., 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA Paper No. AIAA-97-0210.
  • Klein, M., Sadiki, A., Janicka, J., 2003. A digital filter based generation of inflow data for spatially-developing direct numerical or large-eddy simulations. Journal of Computational Physics 186, 652-665.
  • Knupp, P.M., 2003. Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design 39, 217-241.
  • Lawson, T.V., 1968. Methods of producing velocity profiles in wind tunnels. Atmospheric Environment (1967) 2 (1), 73-76.
  • Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A 4, 633-635.
  • Maher, F.J., 1965. Wind loads on basic dome shapes. Journal of the Structural Division 91 (3), 219-228.
  • Manhart, M., 1998. Vortex shedding from a hemisphere in a turbulent boundary layer. Theoretical and Computational Fluid Dynamics 12 (1), 1-28.
  • Martinuzzi, R., Tropea, C., 1993. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Journal of Fluids Engineering 115 (1), 85-92.
  • Meroney, R.N., Letchford, C.W., Sarkar, P.P., 2002. Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer. Wind and Structures 5 (2-4), 347-358.
  • Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62 (3), 183-200.
  • Okamoto, S., Sunabashiri, Y., 1992. Vortex shedding from a circular cylinder of finite length placed on a ground plane. Journal of Fluids Engineering 114 (4), 512-521.
  • Pattenden, R.J., Turnock, S.R., Zhang, X., 2005. Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Experiments in Fluids 39 (1), 10-21.
  • Piomelli, U., Chasnov, J.R., 1996. Large-eddy simulations: Theory and applications. In: M. Hallbäck, D. Henningson, A. Johansson, P. Alfredson (eds.) Turbulence and Transition Modeling, pp. 269-331. Kluwer.
  • Rhie, C.M., Chow, W.L., 1983. Numerical study of the turbulent flow past an airfoil with trailing-edge separation. AIAA Journal 21 (11), 1525-1532.
  • Sakamoto, H., Arie, M., 1983. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. Journal of Fluid Mechanics 126, 147-165.
  • Savory, E., Toy, N., 1986. Hemisphere and hemisphere-cylinders in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 23, 345-364.
  • Savory, E., Toy, N., 1988. The separated shear layers associated with hemispherical bodies in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 28 (1), 291-300.
  • Scheit, C., Nusser, K., Hager, G., Becker, S., Zeiser, T., Wellein, G., 2014. Optimizing the FASTEST-3D CFD code for massive parallelism. In: 26th Int. Conf. on Comp. Fluid Dynamics, ParCFD 2014. Norway, Trondheim.
  • Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S., 2009. Turbulent boundary layers up to studied through simulation and experiment. Physics of Fluids 21 (5), 51,702.
  • Schmidt, S., Breuer, M., 2015. Extended synthetic turbulence inflow generator within a hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded flows. Flow, Turbulence and Combustion 95 (4), 669-707.
  • Schmidt, S., Breuer, M., 2016. Application and extension of a synthetic turbulence inflow generator within a hybrid LES-URANS methodology. In: J. Fröhlich, H. Kuerten, B.J. Geurts, V. Armenio (eds.) ERCOFTAC Series, Direct and Large-Eddy Simulation X, 10th Int. ERCOFTAC Workshop on Direct and Large-Eddy Simulation: DLES-10, Limassol, Cyprus, May 27-29, 2015. Springer Science+Business Media B.V. To appear
  • Schmidt, S., Breuer, M., 2016. Source term based synthetic turbulence inflow generator for eddy–resolving predictions of an airfoil flow including a laminar separation bubble. in preparation.
  • Sergent, E., 2002. Vers une méthodologie de couplage entre la simulation des grandes échelles et les modèles statistiques. Ph.D. thesis, Ecully, Ecole Centrale de Lyon.
  • Simpson, R.L., Long, C.H., Byun, G., 2002. Study of vortical separation from an axisymmetric hill. International Journal of Heat and Fluid Flow 23 (5), 582-591.
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations I: The basic experiment. Monthly Weather Review 91 (3), 99-165.
  • Spalart, P.R., Allmaras, S.R., 1992. A one-equation turbulence model for aerodynamic flows. AIAA Journal 94, 92-439.
  • Tamai, N., Asaeda, T., Tanaka, N., 1987. Vortex structures around a hemispheric hump. Boundary-Layer Meteorology 39 (3), 301-314.
  • Tamura, T., Kuwahara, K., Suzuki, M., 1990. Numerical study of wind pressures on a domed roof and near wake flows. Journal of Wind Engineering and Industrial Aerodynamics 36, 1001-1010.
  • Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.,1982. Time-averaged aerodynamic forces acting on a hemisphere immersed in a turbulent boundary. Journal of Wind Engineering and Industrial Aerodynamics 9 (3), 257-273.
  • Tavakol, M.M., Abouali, O., Yaghoubi, M., 2015. Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling 39 (13), 3596-3618.
  • Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M., 2010. Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science 34 (5), 538-553.
  • Taylor, T.J., 1992. Wind pressures on a hemispherical dome. Journal of Wind Engineering and Industrial Aerodynamics 40 (2), 199-213.
  • Toy, N., Moss, W.D., Savory, E., 1983. Wind tunnel studies on a dome in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 11 (1), 201-212.
  • Wilcox, D.C., 1998. Turbulence Modeling for CFD, second edn. DCW Industries, Inc., La Canada CA.
  • Wood, J.N., De Nayer, G., Schmidt, S., Breuer, M., 2016. Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere. Flow, Turbulence and Combustion 97 (1), 79-119.
  • Yaghoubi, M.A., 1991. Air flow patterns around domed roof buildings. Renewable Energy 1 (3), 345-350.
  • Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G., 1992. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 4 (7), 1510-1520.





Contributed by: Jens Nikolas Wood, Guillaume De Nayer, Stephan Schmidt, Michael Breuer — Helmut-Schmidt Universität Hamburg

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024