EXP 1-1 Introduction: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
 
(199 intermediate revisions by 4 users not shown)
Line 1: Line 1:
=Pressure-swirl spray in a low-turbulence cross-flow=


=Lib:Create_Ercoftac_Article_Form=
{{EXPHeader
{{EXPHeaderLib
|area=1
|area=1
|number=1
|number=1
}}
}}
__NOTOC__
MIME-Version: 1.0
Content-Type: multipart/related; boundary="----=_NextPart_01D9791F.C67D5570"


Tento dokument je webová stránka tvořená jedním souborem, rovněž nazývaná soubor webového archivu. Zobrazí-li se tato zpráva, znamená to, že prohlížeč nebo editor nepodporuje soubory webových archivů. Stáhněte si prohlížeč, který podporuje webový archiv, například aplikaci Windows® Internet Explorer®.
= Introduction =
The subject of the case is a PSA spray exposed to cross-flowing air. A small low-pressure atomizer was used for the study. This atomizer was developed for spraying aviation fuel Jet A-1 (kerosene) into the combustion chamber of a small gas turbine (GT) engine. The here documented operation conditions of the atomizer and the flow velocity correspond to the engine's low-power or steady-flight conditions. The airflow is forced perpendicularly to the main spraying axis, which is considered a cross-flow case. The flow is homogeneous, isothermal and with low turbulence intensity, <math>Tu</math>.
Similar atomizers of this type and size used together with the operating pressure and cross-flow air velocity conditions cover many industrial spray applications ranging from small GT combustors to chemical spray reactors. The conditions are also relevant for agriculture and domestic sprayers.
The processed results of the present case were published in <ref name = "Cejpek2">O. Cejpek, M. Maly, J. Slama, M. M. Avulapati, and J. Jedelsky, Continuum Mechanics and Thermodynamics 34 (6), 1497 (2022)</ref>, with work carried out in the frame of projects №. GA18-15839S and GA 22-17806S funded by Czech Science Foundation and project “Computer Simulations for Effective Low-Emission Energy Engineering” No. CZ.02.1.01/0.0/0.0/16_026/0008392 funded by Operational Programme Research, Development and Education, Priority axis 1: Strengthening capacity for high-quality research. The present case is one of several cases measured and studied in <ref name = "Cejpek2"/>.
The data are relevant to CFD engineers and scientists. They can differentiate the crucial phenomena to be considered in their numerical simulations of that disperse two-phase flow case. The modellers can highlight the important features of the complex two-phase flows and use the data for validation purposes. The case is equally interesting to engineers dealing with the processes where the gas–liquid energy transfer and droplet transport are important.
The case data can be used for further processing to obtain new findings of the problem, derive empirical models and serve as benchmark data.


------=_NextPart_01D9791F.C67D5570
== Main characteristics of the flow and spray ==
Content-Location: file:///C:/106ACAD3/ThesubjectofthecaseisaPSAsprayexposedtocross.htm
The PSA sprays water (which represents low viscosity liquid) into cross-flowing air with low turbulence. There are several forces relevant to the case. Cohesive and consolidating forces acting on the liquid film are the surface tension force <math>F_{\sigma}</math> and the viscosity force <math>F_{\mu}</math>. These are counteracted by disruptive compressive <math>F_p</math> and momentum forces <math>F_m</math>. Apart from these also the gravity force acts. We can neglect the other forces possibly acting on the droplets and other liquid structures, such as stochastic force that accounts for Brownian collisions of the droplet with surrounding fluid molecules, or Basset force.
Content-Transfer-Encoding: quoted-printable
The case can be decomposed into several consequent stages with different relevant phenomena, due to the physical actions of these forces, as shown in '''[[#figure2|Figure 2a]]''':
Content-Type: text/html; charset="windows-1250"
*Liquid flow inside the atomizer, its discharge,
*Sheet formation and the primary break-up of the liquid sheet,
*Liquid secondary break-up and spray formation,
*Interaction of the sprayed liquid with surrounding air: gas–liquid mixing, droplet collisions, droplet clustering, and droplet repositioning.
From a thermodynamic point of view, the case is isothermal and isobaric, except for possible evaporation, which can modify the droplet size <ref name = "Jedelsky3">J. Jedelský, M. Malý, S. K. Vankeswaram, M. Zaremba, R. Kardos, D. Csemány, A. Červenec, and V. Józsa,  (http://dx.doi.org/10.2139/ssrn.4385285)</ref> and can introduce thermal effects, such as the exchange of heat between the discharged liquid and the surrounding air, which are otherwise unimportant. For the purpose of numerical simulations, the case features a two-way to four-way coupling between the gas and liquid phases depending on the position in the spray <ref name = "Jedelsky4"> J. Jedelsky, M. Maly, N. Pinto del Corral, G. Wigley, L. Janackova, and M. Jicha, International Journal of Heat and Mass Transfer 121, 788 (2018)</ref>.


<html xmlns:v=3D"urn:schemas-microsoft-com:vml"
== Underlying flow physics which characterise this case ==
xmlns:o=3D"urn:schemas-microsoft-com:office:office"
The four stages of this case are explained in the consequent subsections.
xmlns:w=3D"urn:schemas-microsoft-com:office:word"
=== Liquid flow inside the atomizer and its discharge ===
xmlns:m=3D"http://schemas.microsoft.com/office/2004/12/omml"
The formation of the liquid film and the resulting spray depend mainly on the internal flow in the atomizer shown in  '''[https://kbwiki.ercoftac.org/w/index.php/EXP_1-1_Experimental_Set_Up#figure7 Figure 7]''',the geometry of the outlet and the interaction with the surrounding environment being additional factors. The liquid is forced into rotational motion inside the swirl chamber due to the tangentially oriented inlet ports.The swirling flow reduces the pressure near the atomizer axis, and when it drops below the air pressure at the exit, an air core establishes along the main atomizer axis. The shape and stability of the air core inside the nozzle directly affect the formation, geometrical characteristics and stability of the liquid sheet that emerges from the nozzle <ref name="Maly5"> M. Maly, O. Cejpek, M. Sapik, V. Ondracek, G. Wigley, and J. Jedelsky, Experimental Thermal and Fluid Science 120, 110210 (2021) </ref>. Therefore, the flow field inside the swirl chamber is key for understanding these processes.
xmlns=3D"http://www.w3.org/TR/REC-html40">


<head>
The liquid, pumped under pressure through the tangentially oriented inlet ports, creates a swirling flow inside the swirl chamber, see '''[https://kbwiki.ercoftac.org/w/index.php/EXP_1-1_Experimental_Set_Up#figure7 Figure 7]'''. Its main purpose is to form a thin liquid film at the nozzle exit. The swirl momentum is determined by the swirl number, <math>S</math>, which represents the ratio of the momentum from the swirl component of the velocity <math>w = u_{in} = Q_l/A_{in}</math> to the axial component <math>u_{o}=Q_l/\pi r_{o}^{2}</math> <br /><br/>
<meta http-equiv=3DContent-Type content=3D"text/html; charset=3Dwindows-125=
{{NumBlk|:|<math>
0">
S = \frac{wr_{c}}{u_{o}r_{o}} = \frac{\pi r_{c} r_{o}}{A_{in}}
<meta name=3DProgId content=3DWord.Document>
</math>|{{EquationRef|1}}}}
<meta name=3DGenerator content=3D"Microsoft Word 15">
<br/><br/>
<meta name=3DOriginator content=3D"Microsoft Word 15">
where <math> A_{in} </math> is the cross-section of the inlet ports, <math>Q_l</math> is the fluid flow rate, <math> r_{c} </math> and <math> r_{o}=d_{o}/2 </math> are the radii of the swirl chamber and the exit orifice respectively (as shown in '''[https://kbwiki.ercoftac.org/w/index.php/EXP_1-1_Experimental_Set_Up#figure7 Figure 7]'''). Thus, the swirl number depends on the nozzle geometry and can be expressed by the nozzle dimension constant <math> k = A_{in} / 4r_{c}r_{o} </math>. <br />
<link rel=3DFile-List
The nature of the flow depends on Reynolds number, <math> Re </math> (ratio of momentum and viscous forces), and insignificantly on Weber number, <math> We </math>, (ratio of momentum and surface tension forces), see '''Equations''' {{EquationNote|11|(11)}}, {{EquationNote|12|(12)}}, where <math> u = u_{in} </math> is considered as the velocity of the fluid entering the chamber and <math> d = d_{c} </math> is its diameter. For larger nozzles and enlarged models, the Froude number: <br /><br/>
href=3D"ThesubjectofthecaseisaPSAsprayexposedtocross_soubory/filelist.xml">
{{NumBlk|:|<math>
<!--[if gte mso 9]><xml>
Fr=\frac{u}{\sqrt{gd}}=\frac{Q_l}{2\pi\left(r_o^2-r_{ac}^2\right)\sqrt{r_og}}
<o:DocumentProperties>
</math>|{{EquationRef|2}}}}
  <o:Author>Jedelsky</o:Author>
<br/><br/>
  <o:Template>Normal</o:Template>
which describes the effect of gravitational forces on the flow, is also important. Here <math> r_{ac} </math> is the air core radius, and <math>g</math> is the gravitational acceleration.
  <o:LastAuthor>Jedelsky</o:LastAuthor>
Earlier theoretical works assumed the internal flow as a non-viscous free vortex <ref name = "Yule6"> A. J. Yule and J. Chinn, presented at the International Conference on Liquid Atomization and Sprays, ICLASS-94, Rouen, France, 1994 (unpublished). </ref>, and with the consideration of Bernoulli's equation for an ideal fluid neglecting the potential term and the radial velocity component, the resulting equation reads: <br/>
  <o:Revision>1</o:Revision>
<br/><br/>
  <o:TotalTime>0</o:TotalTime>
{{NumBlk|:|<math>
  <o:Created>2023-04-27T13:48:00Z</o:Created>
\frac{Q_l^2}{2 \pi^2\left(r_o^2-r_{o a c}^2\right)^2}+\frac{Q_l^2\left(r_c-r_i\right)^2}{2 A_{i n}^2 r_{o a c}^2}=\frac{p_{i n}}{\rho_l}
  <o:LastSaved>2023-04-27T13:48:00Z</o:LastSaved>
</math>|{{EquationRef|3}}}}
  <o:Pages>1</o:Pages>
<br/><br/>
  <o:Words>1154</o:Words>
where <math>r_i</math> is the radius of the inlet ports and <math>r_{oac}</math> is the air core radius in the position of the exit orifice. For the solution, the principle of maximum flow is assumed, i.e., <math>r_{\text {oac }}</math> is adjusted so that the flow rate is always maximum: <math>\delta Q_l / \delta r_{oac}=0</math>. The non-viscous description of the flow was revised in <ref name = "Yule6"/>, <ref name="Chinn7"> J. J. Chinn, Atomization and Sprays 19 (3) (2009); J. J. Chinn, Atomization and Sprays 19 (3) (2009)</ref> and recognised as suitable only for understanding the nature of the flow or preliminary nozzle design. Discrepancies of experiments with the non-viscous theory led to corrections of this model <ref name = "Rizk8"> N. K. Rizk and A. H. Lefebvre, Journal of Propulsion and Power 1 (3), 193 (1985)</ref> <ref name = "Jones9"> A. Jones, presented at the Proceedings of the Second International Conference on Liquid Atomization and Spray Systems, 1982 </ref> <ref name = "Ballester10"> J. Ballester and C. Dopazo, Atomization and sprays 4 (3) (1994) </ref> <ref name = "Benjamin11"> M. Benjamin, A. Mansour, U. Samant, S. Jha, Y. Liao, T. Harris, and S. Jeng, presented at the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, 1998 </ref> <ref name = "Sakman12"> A. Sakman, M. Jog, S. Jeng, and M. Benjamin, AIAA journal 38 (7), 1214 (2000) </ref> and more complex analytical approaches <ref name="Craig13"> L. Craig, N. Barlow, S. Patel, B. Kanya, and S. P. Lin, Atomization and Sprays 19 (12), 1113 (2009) </ref> <ref name="Maly14"> M. Malý, L. Janáčková, J. Jedelský, M. Jícha, R. Lenhard, and K. Kaduchová, presented at the AIP Conference Proceedings, 2016 </ref> <ref name="Amini15"> G. Amini, International Journal of Multiphase Flow 79, 225 (2016) </ref>, which, however, do not reach the accuracy of CFD models.<br/>
  <o:Characters>6810</o:Characters>
The liquid swirling inside the nozzle discharges from the exit orifice at a high velocity into the surrounding air ('''[[#figure2|Figure 2a]]'''). The annular liquid structure formed at the orifice features a relatively low discharge coefficient, <math>C_D</math>, which according Rizk and Lefebvre <ref name="Rizk8"/> is: <math>C_D=0.35 k^{0.5}\left(\frac{r_c}{r_o}\right)^{0.25}=0.39</math> for this case. This value agrees well with the experimental data in '''[https://kbwiki.ercoftac.org/w/index.php/EXP_1-1_Description#table2 Table 2]'''. The efficiency of the conversion of inlet potential energy into kinetic energy at the nozzle exit is <math>\eta_n=\rho_l u_{i n}^2 / 2 p_{i n} </math>. This so-called ''nozzle efficiency'' was studied and estimated by several authors. Horvay with Leuckel <ref name="Horvay16"> M. Horvay and W. Leuckel, German chemical engineering 9 (5), 276 (1986)</ref> found <math>\eta_a=0.42-0.66</math>, Yule with Chinn <ref name="Yule17"> A. Yule and J. Chinn, Atomization and Sprays 10 (2), 121 (2000) </ref> reported <math>\eta_a=0.73-0.86</math>, and we <ref name="Jedelsky4"/> for similarly sized atomizer found <math>\eta_a=0.34-0.41</math>.
  <o:Lines>56</o:Lines>
  <o:Paragraphs>15</o:Paragraphs>
  <o:CharactersWithSpaces>7949</o:CharactersWithSpaces>
  <o:Version>16.00</o:Version>
</o:DocumentProperties>
<o:OfficeDocumentSettings>
  <o:AllowPNG/>
</o:OfficeDocumentSettings>
</xml><![endif]-->
<link rel=3DthemeData
href=3D"ThesubjectofthecaseisaPSAsprayexposedtocross_soubory/themedata.thmx=
">
<link rel=3DcolorSchemeMapping
href=3D"ThesubjectofthecaseisaPSAsprayexposedtocross_soubory/colorschememap=
ping.xml">
<!--[if gte mso 9]><xml>
<w:WordDocument>
  <w:SpellingState>Clean</w:SpellingState>
  <w:GrammarState>Clean</w:GrammarState>
  <w:TrackMoves>false</w:TrackMoves>
  <w:TrackFormatting/>
  <w:HyphenationZone>21</w:HyphenationZone>
  <w:PunctuationKerning/>
  <w:ValidateAgainstSchemas/>
  <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid>
  <w:IgnoreMixedContent>false</w:IgnoreMixedContent>
  <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText>
  <w:DoNotPromoteQF/>
  <w:LidThemeOther>CS</w:LidThemeOther>
  <w:LidThemeAsian>X-NONE</w:LidThemeAsian>
  <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript>
  <w:Compatibility>
  <w:BreakWrappedTables/>
  <w:SnapToGridInCell/>
  <w:WrapTextWithPunct/>
  <w:UseAsianBreakRules/>
  <w:DontGrowAutofit/>
  <w:SplitPgBreakAndParaMark/>
  <w:EnableOpenTypeKerning/>
  <w:DontFlipMirrorIndents/>
  <w:OverrideTableStyleHps/>
  </w:Compatibility>
  <m:mathPr>
  <m:mathFont m:val=3D"Cambria Math"/>
  <m:brkBin m:val=3D"before"/>
  <m:brkBinSub m:val=3D"&#45;-"/>
  <m:smallFrac m:val=3D"off"/>
  <m:dispDef/>
  <m:lMargin m:val=3D"0"/>
  <m:rMargin m:val=3D"0"/>
  <m:defJc m:val=3D"centerGroup"/>
  <m:wrapIndent m:val=3D"1440"/>
  <m:intLim m:val=3D"subSup"/>
  <m:naryLim m:val=3D"undOvr"/>
  </m:mathPr></w:WordDocument>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:LatentStyles DefLockedState=3D"false" DefUnhideWhenUsed=3D"false"
  DefSemiHidden=3D"false" DefQFormat=3D"false" DefPriority=3D"99"
  LatentStyleCount=3D"371">
  <w:LsdException Locked=3D"false" Priority=3D"0" QFormat=3D"true" Name=3D"=
Normal"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" QFormat=3D"true" Name=3D"=
heading 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 7"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 8"/>
  <w:LsdException Locked=3D"false" Priority=3D"9" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"heading 9"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 5"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 6"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 7"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 8"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index 9"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 7"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 8"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"toc 9"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Normal Indent"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"footnote text"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"annotation text"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"header"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"footer"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"index heading"/>
  <w:LsdException Locked=3D"false" Priority=3D"35" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"caption"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"table of figures"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"envelope address"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"envelope return"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"footnote reference"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"annotation reference"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"line number"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"page number"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"endnote reference"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"endnote text"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"table of authorities"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"macro"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"toa heading"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Bullet"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Number"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List 5"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Bullet 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Bullet 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Bullet 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Bullet 5"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Number 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Number 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Number 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Number 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"10" QFormat=3D"true" Name=3D=
"Title"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Closing"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Signature"/>
  <w:LsdException Locked=3D"false" Priority=3D"1" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"Default Paragraph Font"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text Indent"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Continue"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Continue 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Continue 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Continue 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"List Continue 5"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Message Header"/>
  <w:LsdException Locked=3D"false" Priority=3D"11" QFormat=3D"true" Name=3D=
"Subtitle"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Salutation"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Date"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text First Indent"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text First Indent 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Note Heading"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text Indent 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Body Text Indent 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Block Text"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Hyperlink"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"FollowedHyperlink"/>
  <w:LsdException Locked=3D"false" Priority=3D"22" QFormat=3D"true" Name=3D=
"Strong"/>
  <w:LsdException Locked=3D"false" Priority=3D"20" QFormat=3D"true" Name=3D=
"Emphasis"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Document Map"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Plain Text"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"E-mail Signature"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Top of Form"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Bottom of Form"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Normal (Web)"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Acronym"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Address"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Cite"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Code"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Definition"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Keyboard"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Preformatted"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Sample"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Typewriter"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"HTML Variable"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Normal Table"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"annotation subject"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"No List"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Outline List 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Outline List 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Outline List 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Simple 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Simple 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Simple 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Classic 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Classic 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Classic 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Classic 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Colorful 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Colorful 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Colorful 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Columns 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Columns 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Columns 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Columns 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Columns 5"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 5"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 6"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 7"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Grid 8"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 4"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 5"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 6"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 7"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table List 8"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table 3D effects 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table 3D effects 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table 3D effects 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Contemporary"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Elegant"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Professional"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Subtle 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Subtle 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Web 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Web 2"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Web 3"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Balloon Text"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" Name=3D"Table Grid"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" UnhideWhenUsed=3D"tr=
ue"
  Name=3D"Table Theme"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" Name=3D"Placeholder =
Text"/>
  <w:LsdException Locked=3D"false" Priority=3D"1" QFormat=3D"true" Name=3D"=
No Spacing"/>
  <w:LsdException Locked=3D"false" Priority=3D"60" Name=3D"Light Shading"/>
  <w:LsdException Locked=3D"false" Priority=3D"61" Name=3D"Light List"/>
  <w:LsdException Locked=3D"false" Priority=3D"62" Name=3D"Light Grid"/>
  <w:LsdException Locked=3D"false" Priority=3D"63" Name=3D"Medium Shading 1=
"/>
  <w:LsdException Locked=3D"false" Priority=3D"64" Name=3D"Medium Shading 2=
"/>
  <w:LsdException Locked=3D"false" Priority=3D"65" Name=3D"Medium List 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"66" Name=3D"Medium List 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"67" Name=3D"Medium Grid 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"68" Name=3D"Medium Grid 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"69" Name=3D"Medium Grid 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"70" Name=3D"Dark List"/>
  <w:LsdException Locked=3D"false" Priority=3D"71" Name=3D"Colorful Shading=
"/>
  <w:LsdException Locked=3D"false" Priority=3D"72" Name=3D"Colorful List"/>
  <w:LsdException Locked=3D"false" Priority=3D"73" Name=3D"Colorful Grid"/>
  <w:LsdException Locked=3D"false" Priority=3D"60" Name=3D"Light Shading Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"61" Name=3D"Light List Accen=
t 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"62" Name=3D"Light Grid Accen=
t 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"63" Name=3D"Medium Shading 1=
Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"64" Name=3D"Medium Shading 2=
Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"65" Name=3D"Medium List 1 Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" SemiHidden=3D"true" Name=3D"Revision"/>
  <w:LsdException Locked=3D"false" Priority=3D"34" QFormat=3D"true"
  Name=3D"List Paragraph"/>
  <w:LsdException Locked=3D"false" Priority=3D"29" QFormat=3D"true" Name=3D=
"Quote"/>
  <w:LsdException Locked=3D"false" Priority=3D"30" QFormat=3D"true"
  Name=3D"Intense Quote"/>
  <w:LsdException Locked=3D"false" Priority=3D"66" Name=3D"Medium List 2 Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"67" Name=3D"Medium Grid 1 Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"68" Name=3D"Medium Grid 2 Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"69" Name=3D"Medium Grid 3 Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"70" Name=3D"Dark List Accent=
1"/>
  <w:LsdException Locked=3D"false" Priority=3D"71" Name=3D"Colorful Shading=
Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"72" Name=3D"Colorful List Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"73" Name=3D"Colorful Grid Ac=
cent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"60" Name=3D"Light Shading Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"61" Name=3D"Light List Accen=
t 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"62" Name=3D"Light Grid Accen=
t 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"63" Name=3D"Medium Shading 1=
Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"64" Name=3D"Medium Shading 2=
Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"65" Name=3D"Medium List 1 Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"66" Name=3D"Medium List 2 Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"67" Name=3D"Medium Grid 1 Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"68" Name=3D"Medium Grid 2 Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"69" Name=3D"Medium Grid 3 Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"70" Name=3D"Dark List Accent=
2"/>
  <w:LsdException Locked=3D"false" Priority=3D"71" Name=3D"Colorful Shading=
Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"72" Name=3D"Colorful List Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"73" Name=3D"Colorful Grid Ac=
cent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"60" Name=3D"Light Shading Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"61" Name=3D"Light List Accen=
t 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"62" Name=3D"Light Grid Accen=
t 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"63" Name=3D"Medium Shading 1=
Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"64" Name=3D"Medium Shading 2=
Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"65" Name=3D"Medium List 1 Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"66" Name=3D"Medium List 2 Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"67" Name=3D"Medium Grid 1 Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"68" Name=3D"Medium Grid 2 Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"69" Name=3D"Medium Grid 3 Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"70" Name=3D"Dark List Accent=
3"/>
  <w:LsdException Locked=3D"false" Priority=3D"71" Name=3D"Colorful Shading=
Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"72" Name=3D"Colorful List Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"73" Name=3D"Colorful Grid Ac=
cent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"60" Name=3D"Light Shading Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"61" Name=3D"Light List Accen=
t 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"62" Name=3D"Light Grid Accen=
t 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"63" Name=3D"Medium Shading 1=
Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"64" Name=3D"Medium Shading 2=
Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"65" Name=3D"Medium List 1 Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"66" Name=3D"Medium List 2 Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"67" Name=3D"Medium Grid 1 Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"68" Name=3D"Medium Grid 2 Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"69" Name=3D"Medium Grid 3 Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"70" Name=3D"Dark List Accent=
4"/>
  <w:LsdException Locked=3D"false" Priority=3D"71" Name=3D"Colorful Shading=
Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"72" Name=3D"Colorful List Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"73" Name=3D"Colorful Grid Ac=
cent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"60" Name=3D"Light Shading Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"61" Name=3D"Light List Accen=
t 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"62" Name=3D"Light Grid Accen=
t 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"63" Name=3D"Medium Shading 1=
Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"64" Name=3D"Medium Shading 2=
Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"65" Name=3D"Medium List 1 Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"66" Name=3D"Medium List 2 Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"67" Name=3D"Medium Grid 1 Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"68" Name=3D"Medium Grid 2 Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"69" Name=3D"Medium Grid 3 Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"70" Name=3D"Dark List Accent=
5"/>
  <w:LsdException Locked=3D"false" Priority=3D"71" Name=3D"Colorful Shading=
Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"72" Name=3D"Colorful List Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"73" Name=3D"Colorful Grid Ac=
cent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"60" Name=3D"Light Shading Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"61" Name=3D"Light List Accen=
t 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"62" Name=3D"Light Grid Accen=
t 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"63" Name=3D"Medium Shading 1=
Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"64" Name=3D"Medium Shading 2=
Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"65" Name=3D"Medium List 1 Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"66" Name=3D"Medium List 2 Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"67" Name=3D"Medium Grid 1 Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"68" Name=3D"Medium Grid 2 Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"69" Name=3D"Medium Grid 3 Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"70" Name=3D"Dark List Accent=
6"/>
  <w:LsdException Locked=3D"false" Priority=3D"71" Name=3D"Colorful Shading=
Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"72" Name=3D"Colorful List Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"73" Name=3D"Colorful Grid Ac=
cent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"19" QFormat=3D"true"
  Name=3D"Subtle Emphasis"/>
  <w:LsdException Locked=3D"false" Priority=3D"21" QFormat=3D"true"
  Name=3D"Intense Emphasis"/>
  <w:LsdException Locked=3D"false" Priority=3D"31" QFormat=3D"true"
  Name=3D"Subtle Reference"/>
  <w:LsdException Locked=3D"false" Priority=3D"32" QFormat=3D"true"
  Name=3D"Intense Reference"/>
  <w:LsdException Locked=3D"false" Priority=3D"33" QFormat=3D"true" Name=3D=
"Book Title"/>
  <w:LsdException Locked=3D"false" Priority=3D"37" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" Name=3D"Bibliography"/>
  <w:LsdException Locked=3D"false" Priority=3D"39" SemiHidden=3D"true"
  UnhideWhenUsed=3D"true" QFormat=3D"true" Name=3D"TOC Heading"/>
  <w:LsdException Locked=3D"false" Priority=3D"41" Name=3D"Plain Table 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"42" Name=3D"Plain Table 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"43" Name=3D"Plain Table 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"44" Name=3D"Plain Table 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"45" Name=3D"Plain Table 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"40" Name=3D"Grid Table Light=
"/>
  <w:LsdException Locked=3D"false" Priority=3D"46" Name=3D"Grid Table 1 Lig=
ht"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"Grid Table 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"Grid Table 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"Grid Table 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"Grid Table 5 Dar=
k"/>
  <w:LsdException Locked=3D"false" Priority=3D"51" Name=3D"Grid Table 6 Col=
orful"/>
  <w:LsdException Locked=3D"false" Priority=3D"52" Name=3D"Grid Table 7 Col=
orful"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"Grid Table 1 Light Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"Grid Table 2 Acc=
ent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"Grid Table 3 Acc=
ent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"Grid Table 4 Acc=
ent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"Grid Table 5 Dar=
k Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"Grid Table 6 Colorful Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"Grid Table 7 Colorful Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"Grid Table 1 Light Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"Grid Table 2 Acc=
ent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"Grid Table 3 Acc=
ent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"Grid Table 4 Acc=
ent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"Grid Table 5 Dar=
k Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"Grid Table 6 Colorful Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"Grid Table 7 Colorful Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"Grid Table 1 Light Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"Grid Table 2 Acc=
ent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"Grid Table 3 Acc=
ent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"Grid Table 4 Acc=
ent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"Grid Table 5 Dar=
k Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"Grid Table 6 Colorful Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"Grid Table 7 Colorful Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"Grid Table 1 Light Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"Grid Table 2 Acc=
ent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"Grid Table 3 Acc=
ent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"Grid Table 4 Acc=
ent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"Grid Table 5 Dar=
k Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"Grid Table 6 Colorful Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"Grid Table 7 Colorful Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"Grid Table 1 Light Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"Grid Table 2 Acc=
ent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"Grid Table 3 Acc=
ent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"Grid Table 4 Acc=
ent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"Grid Table 5 Dar=
k Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"Grid Table 6 Colorful Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"Grid Table 7 Colorful Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"Grid Table 1 Light Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"Grid Table 2 Acc=
ent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"Grid Table 3 Acc=
ent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"Grid Table 4 Acc=
ent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"Grid Table 5 Dar=
k Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"Grid Table 6 Colorful Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"Grid Table 7 Colorful Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"46" Name=3D"List Table 1 Lig=
ht"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"List Table 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"List Table 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"List Table 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"List Table 5 Dar=
k"/>
  <w:LsdException Locked=3D"false" Priority=3D"51" Name=3D"List Table 6 Col=
orful"/>
  <w:LsdException Locked=3D"false" Priority=3D"52" Name=3D"List Table 7 Col=
orful"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"List Table 1 Light Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"List Table 2 Acc=
ent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"List Table 3 Acc=
ent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"List Table 4 Acc=
ent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"List Table 5 Dar=
k Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"List Table 6 Colorful Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"List Table 7 Colorful Accent 1"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"List Table 1 Light Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"List Table 2 Acc=
ent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"List Table 3 Acc=
ent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"List Table 4 Acc=
ent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"List Table 5 Dar=
k Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"List Table 6 Colorful Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"List Table 7 Colorful Accent 2"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"List Table 1 Light Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"List Table 2 Acc=
ent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"List Table 3 Acc=
ent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"List Table 4 Acc=
ent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"List Table 5 Dar=
k Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"List Table 6 Colorful Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"List Table 7 Colorful Accent 3"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"List Table 1 Light Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"List Table 2 Acc=
ent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"List Table 3 Acc=
ent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"List Table 4 Acc=
ent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"List Table 5 Dar=
k Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"List Table 6 Colorful Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"List Table 7 Colorful Accent 4"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"List Table 1 Light Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"List Table 2 Acc=
ent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"List Table 3 Acc=
ent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"List Table 4 Acc=
ent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"List Table 5 Dar=
k Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"List Table 6 Colorful Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"List Table 7 Colorful Accent 5"/>
  <w:LsdException Locked=3D"false" Priority=3D"46"
  Name=3D"List Table 1 Light Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"47" Name=3D"List Table 2 Acc=
ent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"48" Name=3D"List Table 3 Acc=
ent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"49" Name=3D"List Table 4 Acc=
ent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"50" Name=3D"List Table 5 Dar=
k Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"51"
  Name=3D"List Table 6 Colorful Accent 6"/>
  <w:LsdException Locked=3D"false" Priority=3D"52"
  Name=3D"List Table 7 Colorful Accent 6"/>
</w:LatentStyles>
</xml><![endif]-->
<style>
<!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;
mso-font-charset:0;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:0 268435456 0 0 -2147483648 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;
mso-font-charset:238;
mso-generic-font-family:roman;
mso-font-pitch:variable;
mso-font-signature:-536869121 1107305727 33554432 0 415 0;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;
mso-font-charset:238;
mso-generic-font-family:swiss;
mso-font-pitch:variable;
mso-font-signature:-469750017 -1073732485 9 0 511 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-unhide:no;
mso-style-qformat:yes;
mso-style-parent:"";
margin-top:0cm;
margin-right:0cm;
margin-bottom:8.0pt;
margin-left:0cm;
line-height:115%;
mso-pagination:widow-orphan;
font-size:10.5pt;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:"Times New Roman";
mso-fareast-theme-font:minor-fareast;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;
mso-fareast-language:EN-US;}
p.a-Ercoftac-text1, li.a-Ercoftac-text1, div.a-Ercoftac-text1
{mso-style-name:a-Ercoftac-text1;
mso-style-unhide:no;
mso-style-qformat:yes;
mso-style-link:"a-Ercoftac-text1 Char";
mso-style-next:Normální;
margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
mso-pagination:widow-orphan;
font-size:12.0pt;
mso-bidi-font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:Calibri;
mso-fareast-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;
mso-ansi-language:EN-GB;}
span.a-Ercoftac-text1Char
{mso-style-name:"a-Ercoftac-text1 Char";
mso-style-unhide:no;
mso-style-locked:yes;
mso-style-link:a-Ercoftac-text1;
mso-ansi-font-size:12.0pt;
mso-ansi-language:EN-GB;
mso-fareast-language:CS;}
span.SpellE
{mso-style-name:"";
mso-spl-e:yes;}
span.GramE
{mso-style-name:"";
mso-gram-e:yes;}
.MsoChpDefault
{mso-style-type:export-only;
mso-default-props:yes;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-fareast-font-family:Calibri;
mso-fareast-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;
mso-fareast-language:EN-US;}
.MsoPapDefault
{mso-style-type:export-only;
margin-bottom:8.0pt;
line-height:107%;}
@page WordSection1
{size:595.3pt 841.9pt;
margin:70.85pt 70.85pt 70.85pt 70.85pt;
mso-header-margin:35.4pt;
mso-footer-margin:35.4pt;
mso-paper-source:0;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:1000736928;
mso-list-type:hybrid;
mso-list-template-ids:1097073012 67436545 67436547 67436549 67436545 67436=
547 67436549 67436545 67436547 67436549;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
-->
</style>
<!--[if gte mso 10]>
<style>
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:"Normální tabulka";
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:"";
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin-top:0cm;
mso-para-margin-right:0cm;
mso-para-margin-bottom:8.0pt;
mso-para-margin-left:0cm;
line-height:107%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;
mso-bidi-font-family:"Times New Roman";
mso-bidi-theme-font:minor-bidi;
mso-fareast-language:EN-US;}
</style>
<![endif]--><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext=3D"edit" spidmax=3D"1026"/>
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext=3D"edit">
  <o:idmap v:ext=3D"edit" data=3D"1"/>
</o:shapelayout></xml><![endif]-->
</head>


<body lang=3DCS style=3D'tab-interval:35.4pt'>
===Formation and primary break-up of the liquid sheet ===
The conical liquid sheet spreads in the axial and radial direction, attenuates downstream the nozzle and undergoes a dynamic liquid–gas interaction. That depends on the airflow conditions, which can be distinguished into simple categories of still, co-, counter- or crossflowing air. <br/>
A high-velocity shear between the discharged liquid and the surrounding air produces Kelvin–Helmholtz-type instabilities on the sheet. These add to turbulent perturbations induced by the swirling motion inside the chamber and deform the sheet. The disrupting gas forces and the consolidating surface tension forces of the liquid film are compared using the gas Weber number, <math>W e_g=\rho_l u_l^2 \tau / 2 \sigma</math>, where the indices <math>g</math> and <math>l</math> stand for air and liquid, respectively, and <math>\tau</math> is the sheet thickness. A critical Weber number <math>W e_{g C r}=27 / 16</math> <ref name="Senecal18"> P. K. Senecal and D. P. Schmidt, IRutland, C.JReitz, R.DCorradini, M.L, International Journal of Multiphase Flow 25 (6–7), 1073 (1999) </ref> distinguishes domination of long-wave or short-wave growth on the sheet; long waves prevail when <math>W e_g<W e_{g C r}</math> and short waves in the opposite case. The actual <math>We</math> (see '''[https://kbwiki.ercoftac.org/w/index.php/EXP_1-1_Description#table2 Table 2]'''), compared with <math>W e_{g C r}</math>, shows that long-wave growth appears at lower air velocity, and the transition to the short-wave happens at higher air velocity. The sheet thickness reduces to its critical value, and the surface tension forces perforate the perturbed sheet. The sheet then disrupts or tears into fragments at the break-up distance.<br/>
The internal flow is complex, and the internal disturbances can turbulise the emerging liquid sheet and these disturbances may, depending on their frequency and intensity, reduce the break-up length. This scenario is supported by Sharief et al. <ref name="Sharief19"> R. Sharief, J. Jeong, and D. James, Atomization and Sprays 10 (6) (2000) </ref> and Yule and Chinn <ref name="Yule17"/>, in contradiction to the numerical findings of Deng et al. <ref name="Deng20"> H.-Y. Deng, F. Feng, and X.-S. Wu, Atomization and Sprays 26 (4) (2016) </ref>. The primary break-up features a contraction and ordering of detached sheet fragments into irregularly shaped filaments. These, due to the capillary instability <ref name="Villermaux21"> E. Villermaux, New Journal of Physics 6 (1), 125 (2004) </ref>, break down into single droplets that form a hollow-cone spray. The relative importance of internal viscous and surface tension forces during the sheet disintegration is indicated by the ratio of <math>We</math> to <math>Re</math> of the liquid phase at the discharge orifice after Yule and Dunkley <ref name="Dunkley22"> A. J. Yule and J. J. Dunkley, Atomization of Melts: For Powder Production and Spray Deposition. (Oxford University Press, USA, 1984) </ref> : <math>We / Re=u_o \mu_l / \sigma </math>. The originally two-dimensional sheet breaks down, and its oscillations and mixing with air result in a radial redistribution of the liquid fragments and droplets according to their size classes. The spray acquires a Gaussian velocity profile normal to the sheet surface <ref name="Liu23"> H. Liu, Science and engineering of droplets: fundamentals and applications. (Noyes Publications; William Andrew Pub., Park Ridge, N.J (1999) </ref>. The moving liquid film, fragments, and droplets experience mechanical interactions with the air through viscous drag. The droplets, moving with low <math>Re=\left(u_D-u_g\right)d_D\rho_g/\mu_g </math>, typically below 100, decelerate according to Stokes' law as <math>\frac{d u_D}{d t}= -18 \mu_g\left(u_D-u_g\right) / \rho_l d_D^2</math>, and establish a positive size–velocity correlation which contribute to droplet collisions in the dense spray region <ref name="Santolaya24"> J. L. Santolaya, J. A. García, E. Calvo, and L. M. Cerecedo, International Journal of Multiphase Flow 56 (0), 160 (2013) </ref>. The gas–liquid interaction is described in detail in <ref name="Jedelsky4"/>.


<div class=3DWordSection1>
=== Spray formation ===
The produced droplets cover a wide size range and form a single or double-peak size distribution (in '''[[#figure2|Figure 2b]]'''), depending on the position in the spray. The droplets with <math> d_D < </math> 20 &mu;m decelerate fast to the airflow velocity, medium-size droplets (20 &mu;m <math> < d_D < </math> 50  &mu;m) feature a positive size–velocity correlation, and the largest droplets up to 100 µm keep the original velocity of the discharged liquid. The smallest droplets follow the local air velocity closely, and so the velocity of droplets sized below 5 µm can serve as the air velocity estimate.
<div id="figure2">
<gallery mode=nolines class="center" widths=500px heights=200px>
File:int_ext_flow.png|'''Figure 2a''': Internal and external flow with relevant phenomena and fluid structures (without cross flow, i.e. <math> u_{cf}=</math> 0 m/s)
File:droplet_size_spectra.png|'''Figure 2b''': Droplet size spectra and representative diameters
</gallery>
</div>
The size distribution of the droplets can be represented simply at each position by a suitable mean droplet diameter, for which a general expression is <br/><br/>
{{NumBlk|:|<math>
D_{a b}=\sqrt[a-b]{\sum_{i=1}^n d_i^a / \sum_{i=1}^n d_i^b}
</math>|{{EquationRef|4}}}}
<br/><br/>
where <math> d_i </math> is the diameter of individual droplet <math>i</math> and <math>n</math> is the total number of droplets at the position. The most often used mean droplet diameters are: <math>D_{10}</math>, which is the arithmetic mean diameter (here <math>a=1</math> and <math>b=0</math>, this diameter is used for comparison of disperse systems), <math>D_{20}</math> (surface mean diameter for vaporization studies) and <math>D_{32}</math> is called the Sauter mean diameter (or volume/surface mean diameter) and this one is used for mass and heat transfer evaluations. The spray itself, if sprayed into still air can be considered roughly axially symmetrical with large size and velocity variability in the radial direction. The radial profiles of the mean liquid velocity are self-similar along the axial locations with a peak close to the sheet position. The sprayed mass is mostly distributed along the sheet trajectory, and it forms a hollow-cone spray. The inner region contains only small droplets that are driven there due to the air drag. The main semi-conical spray region behind the disintegrated liquid sheet contains larger high-energetic droplets with high penetration ability. The outer spray periphery covers a small portion of droplets with velocity decreasing with radial distance.
The liquid sheet, its fractions and larger droplets in the near-nozzle area follow the trajectory given by the discharge conditions, while the ensuing flow and motion of small droplets in the far field are more influenced by the interaction with the surrounding gas.
One of the PSA's main parameters is the break-up distance, <math> l_b </math>, which determines the volume of the ligaments and the size of the resulting droplets. It can be determined from the empirical '''Equation''' {{EquationNote|5|(5)}} <ref name="Hai25"> T. Arai and H. Hashimoto, Transactions of the Japan Society of Mechanical Engineers. B 51, 3336 (1985) </ref>: <br/><br/>
{{NumBlk|:|<math>
l_{\mathrm{b}}=0.123 \tau^{0.5} W e^{-0.5} R e^{0.6},
</math>|{{EquationRef|5}}}}
<br/><br/>
semi-empirical '''Equation (3)''' in <ref name="Rezaei26"> S. Rezaei, F. Vashahi, G. Ryu, and J. Lee, Fuel 258, 116094 (2019) </ref>, or analytically using linear stability analysis (LISA) <ref name="Arun27"> G. Arun Vijay and N. Shenbaga Vinayaga Moorthi, Journal of Propulsion and Power 32 (2), 448 (2015) </ref>. Countless correlations have been developed for swirl atomizers spraying into the steady environment to describe droplet size as a function of atomizer operating parameters. The one by Wang and Lefebvre <ref name="Lefebvre28"> X. F. Wang and A. H. Lefebvre, Journal of Propulsion and Power 3 (1), 11 (1987) </ref> calculates <math>D_{32}</math> considering relevant physical phenomena during atomization:<br/><br/>
{{NumBlk|:|<math>
D_{32}=4.52\left(\frac{\sigma u_{l}^2}{\rho_g p_{i n}^2}\right)^{0.25}\left(\tau_0 \cos (S C A)\right)^{0.25}+0.39\left(\frac{\sigma \varrho_l}{\rho_g p_{i n}}\right)^{0.25}\left(\tau_0 \cos (S C A)\right)^{0.75}
</math>|{{EquationRef|6}}}}
<br/><br/>
Available correlations are not fully reliable or universal, so further experiments are required.


<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-famil=
=== Interaction of the sprayed liquid with the surrounding air ===  
y:Calibri;
mso-bidi-theme-font:minor-latin'>The subject of the case is a PSA spray exp=
osed
to cross-flowing air. A small low-PSA <span class=3DGramE>was used</span> f=
or the
study. This atomiser <span class=3DGramE>was developed</span> for spraying
aviation fuel Jet A-1 (kerosene) into the combustion chamber of a small gas
turbine (GT) engine. The here documented operation conditions of the atomis=
er
and the flow velocity corresponding to the engine's low-power or steady-fli=
ght
conditions. The airflow <span class=3DGramE>is forced</span> perpendicularl=
y to
the main spraying axis, which is considered a cross-flow case. The flow is
homogeneous, isothermal and with low turbulence intensity, <i style=3D'mso-=
bidi-font-style:
normal'>Tu</i>.<o:p></o:p></span></p>


<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-famil=
All the above descriptions and most published studies have considered atomizer spraying in the absence of ambient flow. Though liquid spraying into still surrounding air is the most frequently investigated configuration, many applied atomizers work in a flowing environment. Cross-flow spray configuration is relevant, e.g. for Venturi scrubbers <ref name="Coury29"> C. M, H. R, G. S, and J. R. Coury, Brazilian Journal of Chemical Engineering 21 (2004) </ref> where typical velocities range from 10 m/s <ref name="Mi30"> T. Mi and X. M. Yu, Chemical Engineering and Processing: Process Intensification 62, 159 (2012) </ref> or 20 m/s <ref name="Abbaspour31"> N. Abbaspour, M. Haghshenasfard, M. R. Talaei, and H. Amini, Journal of Molecular Liquids 303, 112689 (2020) </ref> up to 30 m/s and even 80 m/s <ref name="Bretten32"> D. Breitenmoser, P. Papadopoulos, T. Lind, and H.-M. Prasser, International Journal of Multiphase Flow 142, 103694 (2021) </ref> <ref name="Ali33"> M. Ali, Y. Qi, and K. Mehboob, Research Journal of Applied Sciences, Engineering and Technology 4 (2012) </ref> <ref name="Goncalves34"> J. A. Gonçalves, M. A. Costa, M. L. Aguiar, and J. R. Coury, J Hazard Mater 116 (1-2), 147 (2004) </ref>.
y:Calibri;
Droplet size at higher ambient flow velocities is affected by the secondary aerodynamic break-up. If we consider a maximum droplet size in the spray of <math> d_{D}=</math> 100 µm, then after <ref name="Lane35"> W. R. Lane, Industrial & Engineering Chemistry 43 (6), 1312 (1951) </ref> <br/><br/>
mso-bidi-theme-font:minor-latin'>Similar atomisers of this type and size us=
{{NumBlk|:|<math>
ed
\Delta v = 784/ \sqrt{d_{D}}
together with the operating pressure and cross-flow air velocity conditions=
</math>|{{EquationRef|7}}}}
cover
<br/><br/>
many industrial spray applications ranging from small GT combustors to chem=
ical
spray reactors. The conditions are also relevant for agriculture and domest=
ic
sprayers.<o:p></o:p></span></p>


<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-famil=
a relative velocity between the droplet and surrounding gas, <math>\Delta v</math>, of about 78 m/s is required for the aerodynamic break-up of a droplet. Thus, the ambient flow velocities tested here do not allow for the secondary break-up to apply. Their resulting size depends on the primary break-up and the design of the atomizer itself. The combination of the forces  <math> F_{p}  </math><math> F_{\sigma}  </math><math> F_m  </math> and  <math> F_{\mu}  </math> acting on the liquid sheet results in its disintegration <ref name="Domb36"> N. Dombrowski and W. R. Johns, Chemical Engineering Science 18, 203 (1963) </ref>. The presence of transverse flow disturbs the flow field around the atomizer and can change compressive force <math> F_{p} </math> and momentum force <math> F_{m} </math> which are derived in detail in <ref name="Domb36"/>. <br/><br/>
y:Calibri;
{{NumBlk|:|<math>
mso-bidi-theme-font:minor-latin'>The processed results of the present case =
F_p=n\rho_g\ (u_1^2+u_2^2\ )yzdx
were
</math>|{{EquationRef|8}}}}
published in </span><!--[if supportFields]><span lang=3DEN-GB><span
<br/><br/>
style=3D'mso-element:field-begin'></span><span
{{NumBlk|:|<math>
style=3D'mso-spacerun:yes'> </span>ADDIN EN.CITE
F_m=-\rho_l\left(\tau\frac{\partial^2y}{\partial t^2}+\frac{\partial \tau}{\partial t}\frac{\partial y}{\partial t}\right)zdx
&lt;EndNote&gt;&lt;Cite&gt;&lt;Author&gt;Cejpek&lt;/Author&gt;&lt;Year&gt;2=
</math>|{{EquationRef|9}}}}
022&lt;/Year&gt;&lt;IDText&gt;Interaction
<br/><br/>
of pressure swirl spray with
cross-flow&lt;/IDText&gt;&lt;DisplayText&gt;[2]&lt;/DisplayText&gt;&lt;reco=
rd&gt;&lt;dates&gt;&lt;pub-dates&gt;&lt;date&gt;2022/11/01&lt;/date&gt;&lt;=
/pub-dates&gt;&lt;year&gt;2022&lt;/year&gt;&lt;/dates&gt;&lt;urls&gt;&lt;re=
lated-urls&gt;&lt;url&gt;https://doi.org/10.1007/s00161-022-01142-3&lt;/url=
&gt;&lt;/related-urls&gt;&lt;/urls&gt;&lt;isbn&gt;1432-0959&lt;/isbn&gt;&lt=
;titles&gt;&lt;title&gt;Interaction
of pressure swirl spray with cross-flow&lt;/title&gt;&lt;secondary-title&gt=
;Continuum
Mechanics and
Thermodynamics&lt;/secondary-title&gt;&lt;/titles&gt;&lt;pages&gt;1497-1515=
&lt;/pages&gt;&lt;number&gt;6&lt;/number&gt;&lt;contributors&gt;&lt;authors=
&gt;&lt;author&gt;Cejpek,
Ondrej&lt;/author&gt;&lt;author&gt;Maly, Milan&lt;/author&gt;&lt;author&gt;=
Slama,
Jaroslav&lt;/author&gt;&lt;author&gt;Avulapati, Madan Mohan&lt;/author&gt;&=
lt;author&gt;Jedelsky,
Jan&lt;/author&gt;&lt;/authors&gt;&lt;/contributors&gt;&lt;added-date
format=3D&quot;utc&quot;&gt;1681977739&lt;/added-date&gt;&lt;ref-type
name=3D&quot;Journal Article&quot;&gt;17&lt;/ref-type&gt;&lt;rec-number&gt;=
1054&lt;/rec-number&gt;&lt;last-updated-date
format=3D&quot;utc&quot;&gt;1681977739&lt;/last-updated-date&gt;&lt;electro=
nic-resource-num&gt;10.1007/s00161-022-01142-3&lt;/electronic-resource-num&=
gt;&lt;volume&gt;34&lt;/volume&gt;&lt;/record&gt;&lt;/Cite&gt;&lt;/EndNote&=
gt;<span
style=3D'mso-element:field-separator'></span></span><![endif]--><span lang=
=3DEN-GB><span
style=3D'mso-no-proof:yes'>[2]</span></span><!--[if supportFields]><span
lang=3DEN-GB><span style=3D'mso-element:field-end'></span></span><![endif]-=
-><span
lang=3DEN-GB style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:mino=
r-latin'>,
with work carried out in the frame of projects &#8470;. GA18-15839S and GA
22-17806S funded by Czech Science Foundation. The present case is one of
several cases measured and studied in </span><!--[if supportFields]><span
lang=3DEN-GB><span style=3D'mso-element:field-begin'></span><span
style=3D'mso-spacerun:yes'> </span>ADDIN EN.CITE
&lt;EndNote&gt;&lt;Cite&gt;&lt;Author&gt;Cejpek&lt;/Author&gt;&lt;Year&gt;2=
022&lt;/Year&gt;&lt;IDText&gt;Interaction
of pressure swirl spray with
cross-flow&lt;/IDText&gt;&lt;DisplayText&gt;[2]&lt;/DisplayText&gt;&lt;reco=
rd&gt;&lt;dates&gt;&lt;pub-dates&gt;&lt;date&gt;2022/11/01&lt;/date&gt;&lt;=
/pub-dates&gt;&lt;year&gt;2022&lt;/year&gt;&lt;/dates&gt;&lt;urls&gt;&lt;re=
lated-urls&gt;&lt;url&gt;https://doi.org/10.1007/s00161-022-01142-3&lt;/url=
&gt;&lt;/related-urls&gt;&lt;/urls&gt;&lt;isbn&gt;1432-0959&lt;/isbn&gt;&lt=
;titles&gt;&lt;title&gt;Interaction
of pressure swirl spray with cross-flow&lt;/title&gt;&lt;secondary-title&gt=
;Continuum
Mechanics and
Thermodynamics&lt;/secondary-title&gt;&lt;/titles&gt;&lt;pages&gt;1497-1515=
&lt;/pages&gt;&lt;number&gt;6&lt;/number&gt;&lt;contributors&gt;&lt;authors=
&gt;&lt;author&gt;Cejpek,
Ondrej&lt;/author&gt;&lt;author&gt;Maly, Milan&lt;/author&gt;&lt;author&gt;=
Slama,
Jaroslav&lt;/author&gt;&lt;author&gt;Avulapati, Madan Mohan&lt;/author&gt;&=
lt;author&gt;Jedelsky,
Jan&lt;/author&gt;&lt;/authors&gt;&lt;/contributors&gt;&lt;added-date
format=3D&quot;utc&quot;&gt;1681977739&lt;/added-date&gt;&lt;ref-type
name=3D&quot;Journal
Article&quot;&gt;17&lt;/ref-type&gt;&lt;rec-number&gt;1054&lt;/rec-number&g=
t;&lt;last-updated-date
format=3D&quot;utc&quot;&gt;1681977739&lt;/last-updated-date&gt;&lt;electro=
nic-resource-num&gt;10.1007/s00161-022-01142-3&lt;/electronic-resource-num&=
gt;&lt;volume&gt;34&lt;/volume&gt;&lt;/record&gt;&lt;/Cite&gt;&lt;/EndNote&=
gt;<span
style=3D'mso-element:field-separator'></span></span><![endif]--><span lang=
=3DEN-GB><span
style=3D'mso-no-proof:yes'>[2]</span></span><!--[if supportFields]><span
lang=3DEN-GB><span style=3D'mso-element:field-end'></span></span><![endif]-=
-><span
lang=3DEN-GB style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:mino=
r-latin'>.<o:p></o:p></span></p>


<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-famil=
<div id="figure3">
y:Calibri;
<gallery mode=nolines class="center" heights=600px widths=600px>
mso-bidi-theme-font:minor-latin'>The data are relevant to CFD engineers and
windward_liquid_sheet.png | '''Figure 3:''' Schematic representation of a windward liquid sheet propagation: without cross-flow ('''left'''), with cross-flow ('''right'''); dimensions not to scale, the coordinate system does not correspond to that used for the experiment
scientists. They can distinguish the crucial phenomena to be considered in
</gallery>
their numerical simulations of that disperse two-phase flow case. The model=
</div>
lers
can highlight the important features of the complex two-phase flows and pro=
vide
data for validation purposes. It is as well as to interesting to engineers
dealing with the processes where the gas–liquid energy transfer and droplet
transport are important.<o:p></o:p></span></p>


<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-famil=
y:Calibri;
mso-bidi-theme-font:minor-latin'>The case data <span class=3DGramE>can be u=
sed</span>
for further processing to obtain new findings of the problem, derive empiri=
cal
models and serve as benchmark data.<o:p></o:p></span></p>


<div style=3D'mso-element:para-border-div;border:none;border-bottom:solid #=
Here <math>n</math> is the wave number, <math>u_l</math> is the velocity of the liquid sheet, <math>u_1</math> and <math>u_2</math> is the velocity of the air on the front and rear side of the sheet respectively. With the presence of cross-flow, the air velocity <math>u_1</math> around the liquid sheet changes, which then affects the <math>F_p</math> acting on the liquid sheet, see '''[[#figure3|Figure 3]]'''. The cross-flow represents an "additional resistance" of the surrounding environment that the liquid sheet must overcome. With this also, the rate of change of momentum of the liquid film and the ratios in '''Equation''' {{EquationNote|9|(9)}} change. The increased <math>F_p</math> and <math>F_m</math> in the cross-flow reduce the break-up distance, <math>l_b</math>, and leads to the formation of larger droplets, as observed in <ref name="Lee37"> S. Lee, W. Kim, and W. Yoon, Journal of Mechanical Science and Technology 24 (2), 559 (2010) </ref>.
A2A9B1 1.0pt;
The studies dealing with sprays in cross-flow express the effect of the ambient flow on the spray by the ratio of the liquid and air momentum (<math>q</math>), the aerodynamic Weber number (<math>We_a</math>) and the relative Weber number (<math>We_r</math>) using '''Equations''' ({{EquationNote|10|(10)}} – {{EquationNote|12|(12)}}).  
mso-border-bottom-alt:solid #A2A9B1 .75pt;padding:0cm 0cm 0cm 0cm;backgroun=
The <math>u_l</math> in '''Equation''' {{EquationNote|10|(10)}} denotes the velocity of the liquid sheet at the discharge point and it is calculated after <ref name="Surya38"> R. Surya Prakash, H. Gadgil, and B. N. Raghunandan, International Journal of Multiphase Flow 66, 79 (2014) </ref>. The Weber number is defined in two ways here. The first <math>We</math> definition, used in <ref name="Surya38"/>, incorporates the cross-flow velocity (<math>u_{cf}</math>) and the diameter of the discharge orifice (<math>d_{o}</math>). The second one, <math>We_{r}</math>, contains the relative velocity of the liquid sheet (<math>u_l</math>) to the cross-flow velocity (<math>u_{cf}</math>), which is denoted <math>u_r</math>. The determination of <math>u_r</math> is shown in '''[[#figure4|Figure 4]]''' and its calculation given by '''Equation''' {{EquationNote|13|(13)}}, where <math>SCA</math> is the spray cone angle.<br/><br/>
d:
{{NumBlk|:|<math>
white'>
q=\frac{\rho_lu_l^2}{\rho_gu_{cf}^2}
</math>|{{EquationRef|10}}}}
<br/><br/>
{{NumBlk|:|<math>
{We}_a=\frac{\rho_gu_{cf}^2d_o}{\sigma}
</math>|{{EquationRef|11}}}}
<br/><br/>
{{NumBlk|:|<math>
{We}_r=\frac{\rho_{g\ }u_r^2\tau_o}{2\sigma}
</math>|{{EquationRef|12}}}}
<br/><br/>
{{NumBlk|:|<math>
u_r=u_l+u_{cf}\sin{\left(\frac{SCA}{2}\right)}
</math>|{{EquationRef|13}}}}
<br/><br/>


<p class=3DMsoNormal style=3D'margin-top:12.0pt;margin-right:0cm;margin-bot=
tom:
3.0pt;margin-left:0cm;line-height:normal;mso-outline-level:2;background:whi=
te;
border:none;mso-border-bottom-alt:solid #A2A9B1 .75pt;padding:0cm;mso-paddi=
ng-alt:
0cm 0cm 0cm 0cm'><span lang=3DEN-GB style=3D'font-size:18.0pt;mso-fareast-f=
ont-family:
"Times New Roman";mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-la=
tin;
color:black;mso-ansi-language:EN-GB;mso-fareast-language:CS'>Main character=
istics
of the flow and spray<o:p></o:p></span></p>


<div id="figure4">
{|align="center"
|[[Image:ur_crossflow.png|700px]]
|-
|'''Figure 4:''' Graphical representation of <math> u_{r} </math> in cross-flow, the right image is a magnified view of the velocity vectors                     
|}
</div>
</div>


<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-size:=
=== Main quantities of interest ===
12.0pt;
The PDA measurements produce data allowing the calculation of droplet size and velocity statistics and, to some extent estimating the local airflow velocity. These data give detailed information on the velocity field of the sprayed liquid and surrounding air. The HSV provides photogrammetric information on the discharged liquid. The data can be used for the estimation of relevant dimensionless criteria that characterise the individual processes involved in the studied case, as summarised in '''[[#table1|Table 1]]'''. The table also contains information on experimental and simulation techniques and approaches used and applicable to study these processes by different researchers.
mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin;background:whi=
<div id="table1">
te'>The
{| class="wikitable" style="margin:auto"
PSA sprays water (which represents low viscosity liquid) into cross-flowing=
|+ '''Table 1''': Processes involved in PSA spraying
air
|-
with low turbulence. There are several forces relevant to the case. Cohesive
! rowspan="2" | <br />   <br />
and consolidating forces acting on the liquid film are the surface tension
! rowspan="2" | <br />'''Process'''
force </span><span class=3DSpellE><i><span lang=3DEN-GB style=3D'mso-bidi-f=
! rowspan="2" | <br />'''Output''',   '''parameters questioned'''
ont-size:
! rowspan="2" | <br />'''Relevant  criteria <math>{^g)}</math>'''
12.0pt;mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'>F<sub>=
! colspan="3" | <br />'''Approaches'''
&#963;</sub></span></i></span><span
|-
lang=3DEN-GB style=3D'mso-bidi-font-size:12.0pt;mso-bidi-font-family:Calibr=
| colspan="2" | <br />'''Experiment'''
i;
| <br />'''Simulation'''
mso-bidi-theme-font:minor-latin'> <span style=3D'background:white'>and the =
|-
viscosity
| <br />1
force </span><span class=3DSpellE><i>F<sub>&#956;</sub></i></span><span
| <br />Internal flow
style=3D'background:white'>. These <span class=3DGramE>are counteracted</sp=
| <br />Velocity  field, air core properties
an> with
| <br /><math>Re_{l}</math>, <math>Fr^{h)}</math><math>S</math>
disruptive compressive and momentum forces </span><span class=3DSpellE><i>F=
| colspan="2" | <br />LDA<math>^{a)}</math>,HSV<math>^{a)}</math>
<sub>p</sub></i></span>
| rowspan="2" | <br />Laminar, URANS,  LES
and <i>F<sub>I</sub></i><span style=3D'background:white'>. Apart from <span
|-
class=3DGramE>those</span> also the </span>gravity force applies. We can ne=
| <br />2
glect
| <br />Discharge and liquid film formation
the other forces possibly acting on the droplets and other liquid structure=
| <br /><math>C_D</math>, <math>SCA</math>,  velocity, stability, liquid film thickness
s,
| <br /><math>Re_{l}</math>, <math>We_{a}</math>, <math>Fr</math><math>Bo^{e)}</math>
such as stochastic force that accounts for Brownian collisions of the dropl=
| colspan="2" | <br /> HSV
et
|-
with surrounding fluid molecules, or Basset force.<o:p></o:p></span></p>
| <br />3
 
| <br />Break-up into smaller structures (primary)
<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-famil=
| <br />break-up   character, <math>l_b</math>
y:Calibri;
| <br /><math>Re_{l}</math>, <math>Oh^{f)}</math><math>We_{a}</math>,  <math>We_{r}</math>, <math>Bo^{e)}</math>
mso-bidi-theme-font:minor-latin'>The case <span class=3DGramE>can be decomp=
| rowspan="2" | <br />LIF<math>^{a)}</math>
osed</span>
| <br />HSV
into several consequent stages with different relevant phenomena, due to the
| rowspan="2" | <br />(LES)<br />   <br />DNS
physical acting of these forces, as shown in </span><!--[if supportFields]>=
|-
<b
| <br />4
style=3D'mso-bidi-font-weight:normal'><span lang=3DEN-GB style=3D'mso-bidi-=
| <br />Subsequent disintegration into droplets (secondary)
font-family:
| <br />Droplet size,   velocity, concentration
Calibri;mso-bidi-theme-font:minor-latin'><span style=3D'mso-element:field-b=
| <br /><math>Re_{l}</math>, <math>Oh</math><math>We_{a}</math><math>We_{r}</math>
egin'></span><span
| rowspan="2" | <br /> PDA<math>^{a)}</math>,   HSV
style=3D'mso-spacerun:yes'> </span>REF _Ref132296320 \h<span
|-
style=3D'mso-spacerun:yes'</span>\* MERGEFORMAT <span style=3D'mso-eleme=
| <br />5
nt:field-separator'></span></span></b><![endif]--><b
| <br />Interaction of droplets with the surrounding  environment and with each other
style=3D'mso-bidi-font-weight:normal'><span lang=3DEN-GB style=3D'mso-bidi-=
| <br />Character of interaction,   energy transfer, droplet collision, evaporation
font-family:
| <br /><math>Re_{g}</math>, <math>Stk^{i)}</math>, <math>We_{c}^{b)}</math>, <math>q</math>, <math>c^{c)}</math>
Calibri;mso-bidi-theme-font:minor-latin'>Figure 2<!--[if gte mso 9]><xml>
| <br />
<w:data>08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200=
| <br />URANS, LES, Stat<math>^{d)}</math>
650066003100330032003200390036003300320030000000</w:data>
|}
</xml><![endif]--></span></b><!--[if supportFields]><b style=3D'mso-bidi-fo=
nt-weight:
normal'><span lang=3DEN-GB style=3D'mso-bidi-font-family:Calibri;mso-bidi-t=
heme-font:
minor-latin'><span style=3D'mso-element:field-end'></span></span></b><![end=
if]--><span
lang=3DEN-GB style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:mino=
r-latin'>,
left:<o:p></o:p></span></p>
 
<p class=3Da-Ercoftac-text1 style=3D'margin-left:36.0pt;text-indent:-18.0pt;
mso-list:l0 level1 lfo1'><![if !supportLists]><span lang=3DEN-GB
style=3D'font-family:Symbol;mso-fareast-font-family:Symbol;mso-bidi-font-fa=
mily:
Symbol'><span style=3D'mso-list:Ignore'>·<span style=3D'font:7.0pt "Times N=
ew Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span></span></span><![endif]><span lang=3DEN-GB style=3D'mso-bidi-font-fa=
mily:
Calibri;mso-bidi-theme-font:minor-latin'>Liquid flow inside the atomiser, i=
ts
discharge,<o:p></o:p></span></p>
 
<p class=3Da-Ercoftac-text1 style=3D'margin-left:36.0pt;text-indent:-18.0pt;
mso-list:l0 level1 lfo1'><![if !supportLists]><span lang=3DEN-GB
style=3D'font-family:Symbol;mso-fareast-font-family:Symbol;mso-bidi-font-fa=
mily:
Symbol'><span style=3D'mso-list:Ignore'>·<span style=3D'font:7.0pt "Times N=
ew Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span></span></span><![endif]><span lang=3DEN-GB style=3D'mso-bidi-font-fa=
mily:
Calibri;mso-bidi-theme-font:minor-latin'>Sheet formation and the primary br=
eak-up
of the liquid sheet,<o:p></o:p></span></p>
 
<p class=3Da-Ercoftac-text1 style=3D'margin-left:36.0pt;text-indent:-18.0pt;
mso-list:l0 level1 lfo1'><![if !supportLists]><span lang=3DEN-GB
style=3D'font-family:Symbol;mso-fareast-font-family:Symbol;mso-bidi-font-fa=
mily:
Symbol'><span style=3D'mso-list:Ignore'>·<span style=3D'font:7.0pt "Times N=
ew Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span></span></span><![endif]><span lang=3DEN-GB style=3D'mso-bidi-font-fa=
mily:
Calibri;mso-bidi-theme-font:minor-latin'>Liquid secondary break-up and spray
formation,<o:p></o:p></span></p>
 
<p class=3Da-Ercoftac-text1 style=3D'margin-left:36.0pt;text-indent:-18.0pt;
mso-list:l0 level1 lfo1'><![if !supportLists]><span lang=3DEN-GB
style=3D'font-family:Symbol;mso-fareast-font-family:Symbol;mso-bidi-font-fa=
mily:
Symbol'><span style=3D'mso-list:Ignore'>·<span style=3D'font:7.0pt "Times N=
ew Roman"'>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span></span></span><![endif]><span lang=3DEN-GB style=3D'mso-bidi-font-fa=
mily:
Calibri;mso-bidi-theme-font:minor-latin'>Interaction of the sprayed liquid =
with
surrounding air: gas–liquid mixing, droplet collisions, droplet clustering,=
  and
droplet repositioning.<o:p></o:p></span></p>
 
<p class=3Da-Ercoftac-text1><span lang=3DEN-GB style=3D'mso-bidi-font-famil=
y:Calibri;
mso-bidi-theme-font:minor-latin'>From a thermodynamic point of view, the ca=
se
is isothermal and isobaric, except for possible evaporation which can modify
the droplet size </span><!--[if supportFields]><span lang=3DEN-GB
style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'><span
style=3D'mso-element:field-begin'></span><span
style=3D'mso-spacerun:yes'> </span>ADDIN EN.CITE
&lt;EndNote&gt;&lt;Cite&gt;&lt;Author&gt;Jedelský&lt;/Author&gt;&lt;IDText&=
gt;Breakup,
Collision Dynamics and Secondary Effects on Fuel&nbsp;Droplets in a
Pressure-Swirl Spray.&nbsp;&lt;/IDText&gt;&lt;DisplayText&gt;[3]&lt;/Displa=
yText&gt;&lt;record&gt;&lt;urls&gt;&lt;related-urls&gt;&lt;url&gt;Available
at SSRN:<span style=3D'mso-spacerun:yes'> 
</span>https://ssrn.com/abstract=3D4385285&lt;/url&gt;&lt;/related-urls&gt;=
&lt;/urls&gt;&lt;titles&gt;&lt;title&gt;Breakup,
Collision Dynamics and Secondary Effects on Fuel&nbsp;Droplets in a
Pressure-Swirl Spray.&nbsp;&lt;/title&gt;&lt;/titles&gt;&lt;contributors&gt=
;&lt;authors&gt;&lt;author&gt;Jedelský,
Jan&lt;/author&gt;&lt;author&gt;Malý,
Milan&lt;/author&gt;&lt;author&gt;Vankeswaram, Sai
Krishna&lt;/author&gt;&lt;author&gt;Zaremba,
Matouš&lt;/author&gt;&lt;author&gt;Kardos, Réka&lt;/author&gt;&lt;author&gt=
;Csemány,
Dávid&lt;/author&gt;&lt;author&gt;Červenec,
Adam&lt;/author&gt;&lt;author&gt;Józsa, Viktor&lt;/author&gt;&lt;/authors&g=
t;&lt;/contributors&gt;&lt;added-date
format=3D&quot;utc&quot;&gt;1681981098&lt;/added-date&gt;&lt;ref-type
name=3D&quot;Manuscript&quot;&gt;36&lt;/ref-type&gt;&lt;rec-number&gt;1060&=
lt;/rec-number&gt;&lt;publisher&gt;http://dx.doi.org/10.2139/ssrn.4385285&l=
t;/publisher&gt;&lt;last-updated-date
format=3D&quot;utc&quot;&gt;1681981165&lt;/last-updated-date&gt;&lt;/record=
&gt;&lt;/Cite&gt;&lt;/EndNote&gt;<span
style=3D'mso-element:field-separator'></span></span><![endif]--><span lang=
=3DEN-GB
style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'><span
style=3D'mso-no-proof:yes'>[3]</span></span><!--[if supportFields]><span
lang=3DEN-GB style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:mino=
r-latin'><span
style=3D'mso-element:field-end'></span></span><![endif]--><span lang=3DEN-GB
style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'>. Th=
at can
introduce thermal effects, such as the exchange of heat between the dischar=
ged
liquid and the surrounding air, which are otherwise unimportant. For the
purpose of numerical simulations, the case features a two-way to four-way
coupling between the gas and liquid phases depending on the position in the
spray </span><!--[if supportFields]><span lang=3DEN-GB style=3D'mso-bidi-fo=
nt-family:
Calibri;mso-bidi-theme-font:minor-latin'><span style=3D'mso-element:field-b=
egin'></span><span
style=3D'mso-spacerun:yes'> </span>ADDIN EN.CITE
&lt;EndNote&gt;&lt;Cite&gt;&lt;Author&gt;Jedelsky&lt;/Author&gt;&lt;Year&gt=
;2018&lt;/Year&gt;&lt;IDText&gt;Air–liquid
interactions in a pressure-swirl spray&lt;/IDText&gt;&lt;DisplayText&gt;[4]=
&lt;/DisplayText&gt;&lt;record&gt;&lt;dates&gt;&lt;pub-dates&gt;&lt;date&gt=
;2018/06/01/&lt;/date&gt;&lt;/pub-dates&gt;&lt;year&gt;2018&lt;/year&gt;&lt=
;/dates&gt;&lt;keywords&gt;&lt;keyword&gt;Gas-liquid
flow&lt;/keyword&gt;&lt;keyword&gt;Droplet
clustering&lt;/keyword&gt;&lt;keyword&gt;Hollow-cone
spray&lt;/keyword&gt;&lt;keyword&gt;Air-droplet interaction&lt;/keyword&gt;=
&lt;keyword&gt;Stokes
number&lt;/keyword&gt;&lt;keyword&gt;Droplet
dynamics&lt;/keyword&gt;&lt;keyword&gt;Flow
seeding&lt;/keyword&gt;&lt;/keywords&gt;&lt;urls&gt;&lt;related-urls&gt;&lt=
;url&gt;http://www.sciencedirect.com/science/article/pii/S001793101735024X&=
lt;/url&gt;&lt;/related-urls&gt;&lt;/urls&gt;&lt;isbn&gt;0017-9310&lt;/isbn=
&gt;&lt;titles&gt;&lt;title&gt;Air–liquid
interactions in a pressure-swirl
spray&lt;/title&gt;&lt;secondary-title&gt;International Journal of Heat and
Mass
Transfer&lt;/secondary-title&gt;&lt;/titles&gt;&lt;pages&gt;788-804&lt;/pag=
es&gt;&lt;contributors&gt;&lt;authors&gt;&lt;author&gt;Jedelsky,
Jan&lt;/author&gt;&lt;author&gt;Maly, Milan&lt;/author&gt;&lt;author&gt;Pin=
to
del Corral, Noé&lt;/author&gt;&lt;author&gt;Wigley,
Graham&lt;/author&gt;&lt;author&gt;Janackova,
Lada&lt;/author&gt;&lt;author&gt;Jicha,
Miroslav&lt;/author&gt;&lt;/authors&gt;&lt;/contributors&gt;&lt;added-date
format=3D&quot;utc&quot;&gt;1537551107&lt;/added-date&gt;&lt;ref-type
name=3D&quot;Journal Article&quot;&gt;17&lt;/ref-type&gt;&lt;rec-number&gt;=
933&lt;/rec-number&gt;&lt;last-updated-date
format=3D&quot;utc&quot;&gt;1537551107&lt;/last-updated-date&gt;&lt;electro=
nic-resource-num&gt;https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.00=
3&lt;/electronic-resource-num&gt;&lt;volume&gt;121&lt;/volume&gt;&lt;/recor=
d&gt;&lt;/Cite&gt;&lt;/EndNote&gt;<span
style=3D'mso-element:field-separator'></span></span><![endif]--><span lang=
=3DEN-GB
style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'><span
style=3D'mso-no-proof:yes'>[4]</span></span><!--[if supportFields]><span
lang=3DEN-GB style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:mino=
r-latin'><span
style=3D'mso-element:field-end'></span></span><![endif]--><span lang=3DEN-GB
style=3D'mso-bidi-font-family:Calibri;mso-bidi-theme-font:minor-latin'>.<o:=
p></o:p></span></p>
 
<p class=3DMsoNormal><o:p>&nbsp;</o:p></p>
 
</div>
</div>
<math>^{a)}</math>Laser Doppler anemometry, phase Doppler anemometry, high-speed visualisation, laser-induced fluorescence, <math>^{b)}</math>collision <math> W e </math> (for definition see <ref name = "Jedelsky3"/>), <math>^{c)}</math>concentration of droplets in spray, <math>{}^{d)}</math>statistical approaches, <math>{}^{e)}</math>Bond number (also called Eötvös number) <math>B o=\Delta \rho g D^2 / \sigma</math>, can only be significant at very low discharge velocity, <math>\Delta \rho</math> is the difference in density between the liquid and the gas, <math>^{f)}</math>Ohnesorge number <math>O h=\sqrt{W e} / \operatorname{Re}=\mu / \sqrt{\rho \sigma D}, D</math> is the characteristic dimension, <math>{}^{g)}</math> <math>Re_{g}</math>, <math>Re_{l}</math>  and <math>We_{g}</math> are defined similarly to <math>We_{a}</math>, <math>We_{r}</math>  and <math>Re_{in}</math> in '''Equations''' {{EquationNote|11|(11)}} {{EquationNote|12|(12)}} '''[https://kbwiki.ercoftac.org/w/index.php/EXP_1-1_Description#math_14 (14)]''' with appropriate characteristic lengths and velocities and the index <math>g</math> and <math>l</math> denote the gas and liquid respectively. <math>{}^{h)}</math>Froude number according to '''Equation''' {{EquationNote|2|(2)}}. <math>{}^{i)}</math>Stokes number <math>S t k=\rho_l \bar{D}_p^2 \Delta \bar{v} / 18 \mu_g L, \Delta v</math> is the difference between the gas and droplet velocity, <math>L</math> is characteristic distance.


</body>
=== References ===
 
<references/>
</html>
 
------=_NextPart_01D9791F.C67D5570
Content-Location: file:///C:/106ACAD3/ThesubjectofthecaseisaPSAsprayexposedtocross_soubory/themedata.thmx
Content-Transfer-Encoding: base64
Content-Type: application/vnd.ms-officetheme
 
UEsDBBQABgAIAAAAIQDp3g+//wAAABwCAAATAAAAW0NvbnRlbnRfVHlwZXNdLnhtbKyRy07DMBBF
90j8g+UtSpyyQAgl6YLHjseifMDImSQWydiyp1X790zSVEKoIBZsLNkz954743K9Hwe1w5icp0qv
8kIrJOsbR12l3zdP2a1WiYEaGDxhpQ+Y9Lq+vCg3h4BJiZpSpXvmcGdMsj2OkHIfkKTS+jgCyzV2
JoD9gA7NdVHcGOuJkTjjyUPX5QO2sB1YPe7l+Zgk4pC0uj82TqxKQwiDs8CS1Oyo+UbJFkIuyrkn
9S6kK4mhzVnCVPkZsOheZTXRNajeIPILjBLDsAyJX89nIBkt5r87nons29ZZbLzdjrKOfDZezE7B
/xRg9T/oE9PMf1t/AgAA//8DAFBLAwQUAAYACAAAACEApdan58AAAAA2AQAACwAAAF9yZWxzLy5y
ZWxzhI/PasMwDIfvhb2D0X1R0sMYJXYvpZBDL6N9AOEof2giG9sb69tPxwYKuwiEpO/3qT3+rov5
4ZTnIBaaqgbD4kM/y2jhdj2/f4LJhaSnJQhbeHCGo3vbtV+8UNGjPM0xG6VItjCVEg+I2U+8Uq5C
ZNHJENJKRds0YiR/p5FxX9cfmJ4Z4DZM0/UWUtc3YK6PqMn/s8MwzJ5PwX+vLOVFBG43lExp5GKh
qC/jU72QqGWq1B7Qtbj51v0BAAD//wMAUEsDBBQABgAIAAAAIQBreZYWgwAAAIoAAAAcAAAAdGhl
bWUvdGhlbWUvdGhlbWVNYW5hZ2VyLnhtbAzMTQrDIBBA4X2hd5DZN2O7KEVissuuu/YAQ5waQceg
0p/b1+XjgzfO3xTVm0sNWSycBw2KZc0uiLfwfCynG6jaSBzFLGzhxxXm6XgYybSNE99JyHNRfSPV
kIWttd0g1rUr1SHvLN1euSRqPYtHV+jT9yniResrJgoCOP0BAAD//wMAUEsDBBQABgAIAAAAIQC4
xAJz4QYAAJsaAAAWAAAAdGhlbWUvdGhlbWUvdGhlbWUxLnhtbOxZz4sbNxS+F/o/DHN3/GvGP5Z4
gz22s+3uJiF2UnLU2rJHWc3IjOTdmBAoyamXQiEtLTTQnnoopYEGGnrpofQvWUho0z+iT5rxWLK1
m82SQihZwzKWv/f06b0339OMLl+5F1HnCCecsLjlli+VXAfHIzYm8bTl3hr2Cw3X4QLFY0RZjFvu
AnP3yvaHH1xGWyLEEXbAPuZbqOWGQsy2ikU+gmHEL7EZjuG3CUsiJOBrMi2OE3QMfiNarJRKtWKE
SOw6MYrA7T4T5Mi5PpmQEXa3l857FGaIBZcDI5oMpGucWeyieITpH9//+Y3Cjw/LEsUXPKCJc4Ro
y4W5xux4iO8J16GIC/ih5ZbUn1vcvlxEW5kRFafYanZ99ZfZZQbjw4qaM5ke5JN6nu/V2rl/BaBi
E9er92q9Wu5PAdBoBKtNueg+/U6z0/UzrAZKLy2+u/VutWzgNf/VDc5tX34MvAKl/r0NfL8fQBQN
vAKleH8D73n1SuAZeAVK8bUNfL3U7np1A69AISXx4Qa65NeqwXK1OWTC6I4V3vS9fr2SOV+hoBry
CpNTTFgszqq3CN1lSR9AEkyRILEjFjM8QSOo5gBRcpAQZ49MQyi+GYoZh+FSpdQvVeG//HjqSkUF
bWGkWUtuwIZvDElODh8lZCZa7sfg1dUgL54/P3n47OThryePHp08/DmbW7ky7HZQPNXtXv3wxT9P
PnX+/uW7V4+/TKdex3Md//Knz17+9vtZ7mHFq1C8+Orpy2dPX3z9+V8/PrZ4byfoQIcPSYS5cw0f
OzdZBAu08McHyZtZDENEdIt2POUoRnIWi/+eCA30tQWiyILrYDOOtxOQGxvw6vyuQXgQJnNBLB53
w8gA7jNGOyyxRmFXzqWFeTiPp/bJk7mOu4nQkW3uAMVGlnvzGWgtsbkMQmzQvEFRLNAUx1g48jd2
iLFldXcIMeK6T0YJ42winDvE6SBiDcmQHBjVtDLaIRHkZWEjCPk2YrN/2+kwalt1Fx+ZSLg3ELWQ
H2JqhPEqmgsU2VwOUUT1gO8hEdpIDhbJSMf1uIBMTzFlTm+MObfZXE9gvVrSd0Fm7Gnfp4vIRCaC
HNp87iHGdGSXHQYhimY27IDEoY79iB9CiSLnBhM2+D4z7xD5HfKA4lPTfZtgI92vV4NboLA6pVWB
yF/miSWXVzEz6newoBOEldRAEzB0PSLxa0V+Td79/07eQURffPvEsqK3I+l2x0Y+3lDM2wmx3k07
axJ+Gm5duAOWjMm7r9tdNI9vYLhVNpvXe9l+L9vu/162T7uf375Yr/QZpFtuW9Mtu9rAR2fu3yeE
0oFYULzH1RaeQ2ca92FQ2qpnWJw/081CuJR3M0xi4KYJUjZOwsQnRISDEM1gn192pZMpz1xPuTNj
HLb/atjqW+LpPNpn4/TRtVyWj6mpgHAkVuMlPx+HRw6Romv11eNY7l6xnapH5yUBafsmJLTJTBJV
C4n6clAGST2oQ9AsJNTK3gqLpoVFQ7pfpmqDBVDLswJbJwc2XC3X98AEjODJClE8lnlKU73Mrkrm
28z0acE0KgD2EcsKWGW6Kbmeujy5urTUzpFpg4RWbiYJFRnVx3iIxjirTjl6HhpvmuvmKqUGPRkK
NR+U1opGvXEWi4vmGuzWtYHGulLQ2DluubWqDyUzQrOWO4HHf7iMZlA7XG55EZ3Cu7SRSNIb/iLK
Mku46CIepgFXopOqQUQEThxKopYrl5+ngcZKQxS3cgUE4Z0l1wRZedfIQdLNJOPJBI+EnnZtREY6
/QoKn2qF9VdlfnGwtGRzSPcgHB87B3Se3ERQYn69LAM4JhzeApXTaI4JvNrMhWxVf2uNKZNd/d2i
qqF0HNFZiLKOoot5CldSntNR3/IYaN+yNUNAtZBkjfBgKhusHlSjm+ZdI+Vwatd9vZGMnCaaq55p
qIrsmnYVM2ZYtoG1WF6syWusliEGTdM7fCrd65LbXGrd2j4h7xIQ8Dx+lq57joagUVtNZlCTjDdl
WGp2Nmr2juUCX0PtPE1CU/3a0u1a3PIeYZ0OBi/U+cFuvWphaLLcW6pIq3MQ/aiCHdwF8ejCy+A5
FVylEg4hEgQbooHak6SyAbfIPZHdGnDlzBPScu+X/LYXVPygUGr4vYJX9UqFht+uFtq+Xy33/HKp
26k8gMYiwqjsp2cwfXgVRRfZSYwa3ziNiZZv2y6NWFRk6pylqIir05hyxTiNSc9hnKE8bnEdAqJz
v1bpN6vNTq3QrLb7Ba/baRSaQa1T6NaCerffDfxGs//AdY4U2GtXA6/WaxRq5SAoeLWSpN9oFupe
pdL26u1Gz2s/yLYxsPJUPrJYQHgVr+1/AQAA//8DAFBLAwQUAAYACAAAACEADdGQn7YAAAAbAQAA
JwAAAHRoZW1lL3RoZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwucmVsc4SPTQrCMBSE94J3CG9v
07oQkSbdiNCt1AOE5DUNNj8kUeztDa4sCC6HYb6ZabuXnckTYzLeMWiqGgg66ZVxmsFtuOyOQFIW
TonZO2SwYIKObzftFWeRSyhNJiRSKC4xmHIOJ0qTnNCKVPmArjijj1bkIqOmQci70Ej3dX2g8ZsB
fMUkvWIQe9UAGZZQmv+z/TgaiWcvHxZd/lFBc9mFBSiixszgI5uqTATKW7q6xN8AAAD//wMAUEsB
Ai0AFAAGAAgAAAAhAOneD7//AAAAHAIAABMAAAAAAAAAAAAAAAAAAAAAAFtDb250ZW50X1R5cGVz
XS54bWxQSwECLQAUAAYACAAAACEApdan58AAAAA2AQAACwAAAAAAAAAAAAAAAAAwAQAAX3JlbHMv
LnJlbHNQSwECLQAUAAYACAAAACEAa3mWFoMAAACKAAAAHAAAAAAAAAAAAAAAAAAZAgAAdGhlbWUv
dGhlbWUvdGhlbWVNYW5hZ2VyLnhtbFBLAQItABQABgAIAAAAIQC4xAJz4QYAAJsaAAAWAAAAAAAA
AAAAAAAAANYCAAB0aGVtZS90aGVtZS90aGVtZTEueG1sUEsBAi0AFAAGAAgAAAAhAA3RkJ+2AAAA
GwEAACcAAAAAAAAAAAAAAAAA6wkAAHRoZW1lL3RoZW1lL19yZWxzL3RoZW1lTWFuYWdlci54bWwu
cmVsc1BLBQYAAAAABQAFAF0BAADmCgAAAAA=
 
------=_NextPart_01D9791F.C67D5570
Content-Location: file:///C:/106ACAD3/ThesubjectofthecaseisaPSAsprayexposedtocross_soubory/colorschememapping.xml
Content-Transfer-Encoding: quoted-printable
Content-Type: text/xml
 
<?xml version=3D"1.0" encoding=3D"UTF-8" standalone=3D"yes"?>
<a:clrMap xmlns:a=3D"http://schemas.openxmlformats.org/drawingml/2006/main"=
bg1=3D"lt1" tx1=3D"dk1" bg2=3D"lt2" tx2=3D"dk2" accent1=3D"accent1" accent=
2=3D"accent2" accent3=3D"accent3" accent4=3D"accent4" accent5=3D"accent5" a=
ccent6=3D"accent6" hlink=3D"hlink" folHlink=3D"folHlink"/>
------=_NextPart_01D9791F.C67D5570
Content-Location: file:///C:/106ACAD3/ThesubjectofthecaseisaPSAsprayexposedtocross_soubory/filelist.xml
Content-Transfer-Encoding: quoted-printable
Content-Type: text/xml; charset="utf-8"
 
<xml xmlns:o=3D"urn:schemas-microsoft-com:office:office">
<o:MainFile HRef=3D"../ThesubjectofthecaseisaPSAsprayexposedtocross.htm"/>
<o:File HRef=3D"themedata.thmx"/>
<o:File HRef=3D"colorschememapping.xml"/>
<o:File HRef=3D"filelist.xml"/>
</xml>
------=_NextPart_01D9791F.C67D5570--
 




<br/>
----
{{ACContribs
{{ACContribs
|authors=Ondrej Cejpek, Milan Maly, Jan Jedelsky
|authors=Ondrej Cejpek, Milan Maly, Ondrej Hajek, Jan Jedelsky
|organisation=Brno University of Technology
|organisation=Brno University of Technology
}}
}}
{{EXPHeaderLib
{{EXPHeader
|area=1
|area=1
|number=1
|number=1

Latest revision as of 08:20, 17 August 2023

Pressure-swirl spray in a low-turbulence cross-flow

Front Page

Introduction

Review of experimental studies

Description

Experimental Set Up

Measurement Quantities and Techniques

Data Quality and Accuracy

Measurement Data and Results

Introduction

The subject of the case is a PSA spray exposed to cross-flowing air. A small low-pressure atomizer was used for the study. This atomizer was developed for spraying aviation fuel Jet A-1 (kerosene) into the combustion chamber of a small gas turbine (GT) engine. The here documented operation conditions of the atomizer and the flow velocity correspond to the engine's low-power or steady-flight conditions. The airflow is forced perpendicularly to the main spraying axis, which is considered a cross-flow case. The flow is homogeneous, isothermal and with low turbulence intensity, . Similar atomizers of this type and size used together with the operating pressure and cross-flow air velocity conditions cover many industrial spray applications ranging from small GT combustors to chemical spray reactors. The conditions are also relevant for agriculture and domestic sprayers. The processed results of the present case were published in [1], with work carried out in the frame of projects №. GA18-15839S and GA 22-17806S funded by Czech Science Foundation and project “Computer Simulations for Effective Low-Emission Energy Engineering” No. CZ.02.1.01/0.0/0.0/16_026/0008392 funded by Operational Programme Research, Development and Education, Priority axis 1: Strengthening capacity for high-quality research. The present case is one of several cases measured and studied in [1]. The data are relevant to CFD engineers and scientists. They can differentiate the crucial phenomena to be considered in their numerical simulations of that disperse two-phase flow case. The modellers can highlight the important features of the complex two-phase flows and use the data for validation purposes. The case is equally interesting to engineers dealing with the processes where the gas–liquid energy transfer and droplet transport are important. The case data can be used for further processing to obtain new findings of the problem, derive empirical models and serve as benchmark data.

Main characteristics of the flow and spray

The PSA sprays water (which represents low viscosity liquid) into cross-flowing air with low turbulence. There are several forces relevant to the case. Cohesive and consolidating forces acting on the liquid film are the surface tension force and the viscosity force . These are counteracted by disruptive compressive and momentum forces . Apart from these also the gravity force acts. We can neglect the other forces possibly acting on the droplets and other liquid structures, such as stochastic force that accounts for Brownian collisions of the droplet with surrounding fluid molecules, or Basset force. The case can be decomposed into several consequent stages with different relevant phenomena, due to the physical actions of these forces, as shown in Figure 2a:

  • Liquid flow inside the atomizer, its discharge,
  • Sheet formation and the primary break-up of the liquid sheet,
  • Liquid secondary break-up and spray formation,
  • Interaction of the sprayed liquid with surrounding air: gas–liquid mixing, droplet collisions, droplet clustering, and droplet repositioning.

From a thermodynamic point of view, the case is isothermal and isobaric, except for possible evaporation, which can modify the droplet size [2] and can introduce thermal effects, such as the exchange of heat between the discharged liquid and the surrounding air, which are otherwise unimportant. For the purpose of numerical simulations, the case features a two-way to four-way coupling between the gas and liquid phases depending on the position in the spray [3].

Underlying flow physics which characterise this case

The four stages of this case are explained in the consequent subsections.

Liquid flow inside the atomizer and its discharge

The formation of the liquid film and the resulting spray depend mainly on the internal flow in the atomizer shown in Figure 7,the geometry of the outlet and the interaction with the surrounding environment being additional factors. The liquid is forced into rotational motion inside the swirl chamber due to the tangentially oriented inlet ports.The swirling flow reduces the pressure near the atomizer axis, and when it drops below the air pressure at the exit, an air core establishes along the main atomizer axis. The shape and stability of the air core inside the nozzle directly affect the formation, geometrical characteristics and stability of the liquid sheet that emerges from the nozzle [4]. Therefore, the flow field inside the swirl chamber is key for understanding these processes.

The liquid, pumped under pressure through the tangentially oriented inlet ports, creates a swirling flow inside the swirl chamber, see Figure 7. Its main purpose is to form a thin liquid film at the nozzle exit. The swirl momentum is determined by the swirl number, , which represents the ratio of the momentum from the swirl component of the velocity to the axial component

 

 

 

 

(1)



where is the cross-section of the inlet ports, is the fluid flow rate, and are the radii of the swirl chamber and the exit orifice respectively (as shown in Figure 7). Thus, the swirl number depends on the nozzle geometry and can be expressed by the nozzle dimension constant .
The nature of the flow depends on Reynolds number, (ratio of momentum and viscous forces), and insignificantly on Weber number, , (ratio of momentum and surface tension forces), see Equations (11), (12), where is considered as the velocity of the fluid entering the chamber and is its diameter. For larger nozzles and enlarged models, the Froude number:

 

 

 

 

(2)



which describes the effect of gravitational forces on the flow, is also important. Here is the air core radius, and is the gravitational acceleration. Earlier theoretical works assumed the internal flow as a non-viscous free vortex [5], and with the consideration of Bernoulli's equation for an ideal fluid neglecting the potential term and the radial velocity component, the resulting equation reads:


 

 

 

 

(3)



where is the radius of the inlet ports and is the air core radius in the position of the exit orifice. For the solution, the principle of maximum flow is assumed, i.e., is adjusted so that the flow rate is always maximum: . The non-viscous description of the flow was revised in [5], [6] and recognised as suitable only for understanding the nature of the flow or preliminary nozzle design. Discrepancies of experiments with the non-viscous theory led to corrections of this model [7] [8] [9] [10] [11] and more complex analytical approaches [12] [13] [14], which, however, do not reach the accuracy of CFD models.
The liquid swirling inside the nozzle discharges from the exit orifice at a high velocity into the surrounding air (Figure 2a). The annular liquid structure formed at the orifice features a relatively low discharge coefficient, , which according Rizk and Lefebvre [7] is: for this case. This value agrees well with the experimental data in Table 2. The efficiency of the conversion of inlet potential energy into kinetic energy at the nozzle exit is . This so-called nozzle efficiency was studied and estimated by several authors. Horvay with Leuckel [15] found , Yule with Chinn [16] reported , and we [3] for similarly sized atomizer found .

Formation and primary break-up of the liquid sheet

The conical liquid sheet spreads in the axial and radial direction, attenuates downstream the nozzle and undergoes a dynamic liquid–gas interaction. That depends on the airflow conditions, which can be distinguished into simple categories of still, co-, counter- or crossflowing air.
A high-velocity shear between the discharged liquid and the surrounding air produces Kelvin–Helmholtz-type instabilities on the sheet. These add to turbulent perturbations induced by the swirling motion inside the chamber and deform the sheet. The disrupting gas forces and the consolidating surface tension forces of the liquid film are compared using the gas Weber number, , where the indices and stand for air and liquid, respectively, and is the sheet thickness. A critical Weber number [17] distinguishes domination of long-wave or short-wave growth on the sheet; long waves prevail when and short waves in the opposite case. The actual (see Table 2), compared with , shows that long-wave growth appears at lower air velocity, and the transition to the short-wave happens at higher air velocity. The sheet thickness reduces to its critical value, and the surface tension forces perforate the perturbed sheet. The sheet then disrupts or tears into fragments at the break-up distance.
The internal flow is complex, and the internal disturbances can turbulise the emerging liquid sheet and these disturbances may, depending on their frequency and intensity, reduce the break-up length. This scenario is supported by Sharief et al. [18] and Yule and Chinn [16], in contradiction to the numerical findings of Deng et al. [19]. The primary break-up features a contraction and ordering of detached sheet fragments into irregularly shaped filaments. These, due to the capillary instability [20], break down into single droplets that form a hollow-cone spray. The relative importance of internal viscous and surface tension forces during the sheet disintegration is indicated by the ratio of to of the liquid phase at the discharge orifice after Yule and Dunkley [21] : . The originally two-dimensional sheet breaks down, and its oscillations and mixing with air result in a radial redistribution of the liquid fragments and droplets according to their size classes. The spray acquires a Gaussian velocity profile normal to the sheet surface [22]. The moving liquid film, fragments, and droplets experience mechanical interactions with the air through viscous drag. The droplets, moving with low , typically below 100, decelerate according to Stokes' law as , and establish a positive size–velocity correlation which contribute to droplet collisions in the dense spray region [23]. The gas–liquid interaction is described in detail in [3].

Spray formation

The produced droplets cover a wide size range and form a single or double-peak size distribution (in Figure 2b), depending on the position in the spray. The droplets with 20 μm decelerate fast to the airflow velocity, medium-size droplets (20 μm 50 μm) feature a positive size–velocity correlation, and the largest droplets up to 100 µm keep the original velocity of the discharged liquid. The smallest droplets follow the local air velocity closely, and so the velocity of droplets sized below 5 µm can serve as the air velocity estimate.

The size distribution of the droplets can be represented simply at each position by a suitable mean droplet diameter, for which a general expression is

 

 

 

 

(4)



where is the diameter of individual droplet and is the total number of droplets at the position. The most often used mean droplet diameters are: , which is the arithmetic mean diameter (here and , this diameter is used for comparison of disperse systems), (surface mean diameter for vaporization studies) and is called the Sauter mean diameter (or volume/surface mean diameter) and this one is used for mass and heat transfer evaluations. The spray itself, if sprayed into still air can be considered roughly axially symmetrical with large size and velocity variability in the radial direction. The radial profiles of the mean liquid velocity are self-similar along the axial locations with a peak close to the sheet position. The sprayed mass is mostly distributed along the sheet trajectory, and it forms a hollow-cone spray. The inner region contains only small droplets that are driven there due to the air drag. The main semi-conical spray region behind the disintegrated liquid sheet contains larger high-energetic droplets with high penetration ability. The outer spray periphery covers a small portion of droplets with velocity decreasing with radial distance. The liquid sheet, its fractions and larger droplets in the near-nozzle area follow the trajectory given by the discharge conditions, while the ensuing flow and motion of small droplets in the far field are more influenced by the interaction with the surrounding gas. One of the PSA's main parameters is the break-up distance, , which determines the volume of the ligaments and the size of the resulting droplets. It can be determined from the empirical Equation (5) [24]:

 

 

 

 

(5)



semi-empirical Equation (3) in [25], or analytically using linear stability analysis (LISA) [26]. Countless correlations have been developed for swirl atomizers spraying into the steady environment to describe droplet size as a function of atomizer operating parameters. The one by Wang and Lefebvre [27] calculates considering relevant physical phenomena during atomization:

 

 

 

 

(6)



Available correlations are not fully reliable or universal, so further experiments are required.

Interaction of the sprayed liquid with the surrounding air

All the above descriptions and most published studies have considered atomizer spraying in the absence of ambient flow. Though liquid spraying into still surrounding air is the most frequently investigated configuration, many applied atomizers work in a flowing environment. Cross-flow spray configuration is relevant, e.g. for Venturi scrubbers [28] where typical velocities range from 10 m/s [29] or 20 m/s [30] up to 30 m/s and even 80 m/s [31] [32] [33]. Droplet size at higher ambient flow velocities is affected by the secondary aerodynamic break-up. If we consider a maximum droplet size in the spray of 100 µm, then after [34]

 

 

 

 

(7)



a relative velocity between the droplet and surrounding gas, , of about 78 m/s is required for the aerodynamic break-up of a droplet. Thus, the ambient flow velocities tested here do not allow for the secondary break-up to apply. Their resulting size depends on the primary break-up and the design of the atomizer itself. The combination of the forces , , and acting on the liquid sheet results in its disintegration [35]. The presence of transverse flow disturbs the flow field around the atomizer and can change compressive force and momentum force which are derived in detail in [35].

 

 

 

 

(8)



 

 

 

 

(9)




Here is the wave number, is the velocity of the liquid sheet, and is the velocity of the air on the front and rear side of the sheet respectively. With the presence of cross-flow, the air velocity around the liquid sheet changes, which then affects the acting on the liquid sheet, see Figure 3. The cross-flow represents an "additional resistance" of the surrounding environment that the liquid sheet must overcome. With this also, the rate of change of momentum of the liquid film and the ratios in Equation (9) change. The increased and in the cross-flow reduce the break-up distance, , and leads to the formation of larger droplets, as observed in [36]. The studies dealing with sprays in cross-flow express the effect of the ambient flow on the spray by the ratio of the liquid and air momentum (), the aerodynamic Weber number () and the relative Weber number () using Equations ((10)(12)). The in Equation (10) denotes the velocity of the liquid sheet at the discharge point and it is calculated after [37]. The Weber number is defined in two ways here. The first definition, used in [37], incorporates the cross-flow velocity () and the diameter of the discharge orifice (). The second one, , contains the relative velocity of the liquid sheet () to the cross-flow velocity (), which is denoted . The determination of is shown in Figure 4 and its calculation given by Equation (13), where is the spray cone angle.

 

 

 

 

(10)



 

 

 

 

(11)



 

 

 

 

(12)



 

 

 

 

(13)




Ur crossflow.png
Figure 4: Graphical representation of in cross-flow, the right image is a magnified view of the velocity vectors

Main quantities of interest

The PDA measurements produce data allowing the calculation of droplet size and velocity statistics and, to some extent estimating the local airflow velocity. These data give detailed information on the velocity field of the sprayed liquid and surrounding air. The HSV provides photogrammetric information on the discharged liquid. The data can be used for the estimation of relevant dimensionless criteria that characterise the individual processes involved in the studied case, as summarised in Table 1. The table also contains information on experimental and simulation techniques and approaches used and applicable to study these processes by different researchers.

Table 1: Processes involved in PSA spraying



Process

Output, parameters questioned

Relevant criteria

Approaches

Experiment

Simulation

1

Internal flow

Velocity field, air core properties

, ,

LDA,HSV

Laminar, URANS, LES

2

Discharge and liquid film formation

, , velocity, stability, liquid film thickness

, , ,

HSV

3

Break-up into smaller structures (primary)

break-up character,

, , , ,

LIF

HSV

(LES)

DNS

4

Subsequent disintegration into droplets (secondary)

Droplet size, velocity, concentration

, , ,

PDA, HSV

5

Interaction of droplets with the surrounding environment and with each other

Character of interaction, energy transfer, droplet collision, evaporation

, , , ,


URANS, LES, Stat

Laser Doppler anemometry, phase Doppler anemometry, high-speed visualisation, laser-induced fluorescence, collision (for definition see [2]), concentration of droplets in spray, statistical approaches, Bond number (also called Eötvös number) , can only be significant at very low discharge velocity, is the difference in density between the liquid and the gas, Ohnesorge number is the characteristic dimension, , and are defined similarly to , and in Equations (11) (12) (14) with appropriate characteristic lengths and velocities and the index and denote the gas and liquid respectively. Froude number according to Equation (2). Stokes number is the difference between the gas and droplet velocity, is characteristic distance.

References

  1. 1.0 1.1 O. Cejpek, M. Maly, J. Slama, M. M. Avulapati, and J. Jedelsky, Continuum Mechanics and Thermodynamics 34 (6), 1497 (2022)
  2. 2.0 2.1 J. Jedelský, M. Malý, S. K. Vankeswaram, M. Zaremba, R. Kardos, D. Csemány, A. Červenec, and V. Józsa, (http://dx.doi.org/10.2139/ssrn.4385285)
  3. 3.0 3.1 3.2 J. Jedelsky, M. Maly, N. Pinto del Corral, G. Wigley, L. Janackova, and M. Jicha, International Journal of Heat and Mass Transfer 121, 788 (2018)
  4. M. Maly, O. Cejpek, M. Sapik, V. Ondracek, G. Wigley, and J. Jedelsky, Experimental Thermal and Fluid Science 120, 110210 (2021)
  5. 5.0 5.1 A. J. Yule and J. Chinn, presented at the International Conference on Liquid Atomization and Sprays, ICLASS-94, Rouen, France, 1994 (unpublished).
  6. J. J. Chinn, Atomization and Sprays 19 (3) (2009); J. J. Chinn, Atomization and Sprays 19 (3) (2009)
  7. 7.0 7.1 N. K. Rizk and A. H. Lefebvre, Journal of Propulsion and Power 1 (3), 193 (1985)
  8. A. Jones, presented at the Proceedings of the Second International Conference on Liquid Atomization and Spray Systems, 1982
  9. J. Ballester and C. Dopazo, Atomization and sprays 4 (3) (1994)
  10. M. Benjamin, A. Mansour, U. Samant, S. Jha, Y. Liao, T. Harris, and S. Jeng, presented at the ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, 1998
  11. A. Sakman, M. Jog, S. Jeng, and M. Benjamin, AIAA journal 38 (7), 1214 (2000)
  12. L. Craig, N. Barlow, S. Patel, B. Kanya, and S. P. Lin, Atomization and Sprays 19 (12), 1113 (2009)
  13. M. Malý, L. Janáčková, J. Jedelský, M. Jícha, R. Lenhard, and K. Kaduchová, presented at the AIP Conference Proceedings, 2016
  14. G. Amini, International Journal of Multiphase Flow 79, 225 (2016)
  15. M. Horvay and W. Leuckel, German chemical engineering 9 (5), 276 (1986)
  16. 16.0 16.1 A. Yule and J. Chinn, Atomization and Sprays 10 (2), 121 (2000)
  17. P. K. Senecal and D. P. Schmidt, IRutland, C.JReitz, R.DCorradini, M.L, International Journal of Multiphase Flow 25 (6–7), 1073 (1999)
  18. R. Sharief, J. Jeong, and D. James, Atomization and Sprays 10 (6) (2000)
  19. H.-Y. Deng, F. Feng, and X.-S. Wu, Atomization and Sprays 26 (4) (2016)
  20. E. Villermaux, New Journal of Physics 6 (1), 125 (2004)
  21. A. J. Yule and J. J. Dunkley, Atomization of Melts: For Powder Production and Spray Deposition. (Oxford University Press, USA, 1984)
  22. H. Liu, Science and engineering of droplets: fundamentals and applications. (Noyes Publications; William Andrew Pub., Park Ridge, N.J (1999)
  23. J. L. Santolaya, J. A. García, E. Calvo, and L. M. Cerecedo, International Journal of Multiphase Flow 56 (0), 160 (2013)
  24. T. Arai and H. Hashimoto, Transactions of the Japan Society of Mechanical Engineers. B 51, 3336 (1985)
  25. S. Rezaei, F. Vashahi, G. Ryu, and J. Lee, Fuel 258, 116094 (2019)
  26. G. Arun Vijay and N. Shenbaga Vinayaga Moorthi, Journal of Propulsion and Power 32 (2), 448 (2015)
  27. X. F. Wang and A. H. Lefebvre, Journal of Propulsion and Power 3 (1), 11 (1987)
  28. C. M, H. R, G. S, and J. R. Coury, Brazilian Journal of Chemical Engineering 21 (2004)
  29. T. Mi and X. M. Yu, Chemical Engineering and Processing: Process Intensification 62, 159 (2012)
  30. N. Abbaspour, M. Haghshenasfard, M. R. Talaei, and H. Amini, Journal of Molecular Liquids 303, 112689 (2020)
  31. D. Breitenmoser, P. Papadopoulos, T. Lind, and H.-M. Prasser, International Journal of Multiphase Flow 142, 103694 (2021)
  32. M. Ali, Y. Qi, and K. Mehboob, Research Journal of Applied Sciences, Engineering and Technology 4 (2012)
  33. J. A. Gonçalves, M. A. Costa, M. L. Aguiar, and J. R. Coury, J Hazard Mater 116 (1-2), 147 (2004)
  34. W. R. Lane, Industrial & Engineering Chemistry 43 (6), 1312 (1951)
  35. 35.0 35.1 N. Dombrowski and W. R. Johns, Chemical Engineering Science 18, 203 (1963)
  36. S. Lee, W. Kim, and W. Yoon, Journal of Mechanical Science and Technology 24 (2), 559 (2010)
  37. 37.0 37.1 R. Surya Prakash, H. Gadgil, and B. N. Raghunandan, International Journal of Multiphase Flow 66, 79 (2014)



Contributed by: Ondrej Cejpek, Milan Maly, Ondrej Hajek, Jan Jedelsky — Brno University of Technology

Front Page

Introduction

Review of experimental studies

Description

Experimental Set Up

Measurement Quantities and Techniques

Data Quality and Accuracy

Measurement Data and Results


© copyright ERCOFTAC 2024