UFR 3-33 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
mNo edit summary
m (Dave.Ellacott moved page SilverP:UFR 3-33 References to UFR 3-33 References)
 
(28 intermediate revisions by 3 users not shown)
Line 1: Line 1:
=Turbulent flow past a smooth and rigid wall-mounted hemisphere=
{{UFRHeader
{{UFRHeader
|area=3
|area=3
Line 5: Line 4:
}}
}}
__NOTOC__
__NOTOC__
==Semi-confined flows==
 
===Underlying Flow Regime 3-33===
= References =
= References =
{{Demo_UFR_References}}


* Acarlar, M.S., Smith, C.R.: A study of hairpin vortices in a laminar boundary layer. {P}art 1. {H}airpin vortices generated by a hemisphere protuberance. Journal of Fluid Mechanics \textbf{175}, 1--41 (1987)
* Acarlar, M.S., Smith, C.R., 1987. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. Journal of Fluid Mechanics 175, 1-41.
 
* Adrian, R.J., Yao, C.S., 1986. Power spectra of fluid velocities measured by laser-Doppler velocimetry. Experiments in Fluids 5 (1), 17-28.
 
* Baker, C.J., 1980. The turbulent horseshoe vortex. Journal of Wind Engineering and Industrial Aerodynamics 6 (1), 9-23.
 
* Benedict, L.H., Nobach, H., Tropea, C., 2000. Estimation of turbulent velocity spectra from laser-Doppler data. Measurement Science and Technology 11 (8), 1089-1104.
 
* Bennington, J.L., 2004. Effects of various shaped roughness elements in two-dimensional high Reynolds number turbulent boundary layers. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.


* Adrian, R.J., Yao, C.S.: Power spectra of fluid velocities measured by laser-{D}oppler velocimetry. Experiments in Fluids \textbf{5}(1), 17--28 (1986)
* Breuer, M., 2002. Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen, Germany.


* Baker, C.J.: The turbulent horseshoe vortex. Journal of Wind Engineering and Industrial Aerodynamics \textbf{6}(1), 9--23 (1980)
* Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner, R., 2012. Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. Journal of Fluids and Structures 29, 107-130.


* Benedict, L.H., Nobach, H., Tropea, C.: Estimation of turbulent velocity spectra from laser-{D}oppler data. Measurement Science and Technology \textbf{11}(8), 1089--1104 (2000)
* Broersen, P.M.T., de Waele, S., Bos, R., 2000. The accuracy of time series analysis for laser-Doppler velocimetry. In: Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal.


* Bennington, J.L.: \ch{Effects of various shaped roughness elements in two-dimensional high Reynolds number turbulent boundary layers}. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA (2004)
* Byun, G., Simpson, R.L., 2006. Structure of three-dimensional separated flow on an axisymmetric bump. AIAA Journal 44 (5), 999-1008.


* Breuer, M., De~Nayer, G., M\"unsch, M., Gallinger, T., W\"uchner, R.: Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. Journal of Fluids and Structures \textbf{29}, 107--130 (2012)
* Byun, G., Simpson, R.L., 2010. Surface-pressure fluctuations from separated flow over an axisymmetric bump. AIAA Journal 48 (10), 2397-2405.


* Broersen, P.M.T., de~Waele, S., Bos, R.: The accuracy of time series analysis for laser-{D}oppler velocimetry. In: Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal (2000)
* Cheng, C.M., Fu, C.L., 2010. Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics 98 (6), 328-344.


* Byun, G., Simpson, R.L.: Structure of three-dimensional separated flow on an axisymmetric bump. AIAA {J}ournal \textbf{44}(5), 999--1008 (2006)
* Counihan, J., 1969. An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmospheric Environment (1967) 3 (2), 197-214.


* Byun, G., Simpson, R.L.: Surface-pressure fluctuations from separated flow over an axisymmetric bump. AIAA {J}ournal \textbf{48}(10), 2397--2405 (2010)
* Counihan, J., 1975. Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972. Atmospheric Environment (1967) 9 (10), 871-905.


* Cheng, C.M., Fu, C.L.: Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics \textbf{98}(6), 328--344 (2010)
* Druault, P., Lardeau, S., Bonnet, J.-P., Coifft, F., Lamballais, E., Largeau, J. F., Perret, L., 2004, Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J., vol. 42 (3) , pp. 447-456.


* Counihan, J.: An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmospheric Environment (1967) \textbf{3}(2), 197--214 (1969)
* Durst, F., Schäfer, M., 1996. A parallel block-structured multigrid method for the prediction of incompressible flows. Int. Journal for Numerical Methods in Fluids 22 (6), 549-565.


* Counihan, J.: Adiabatic atmospheric boundary layers: {A} review and analysis of data from the period 1880--1972. Atmospheric Environment (1967) \textbf{9}(10), 871--905 (1975)
* Durst, F., Schäfer, M., Wechsler, K., 1996. Efficient simulation of incompressible viscous flows on parallel computers. In: E.H. Hirschel (ed.) Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, vol. 52 (1), pp. 87-101. Vieweg.


* Durst, F., Sch\"afer, M.: A parallel block-structured multigrid method for the prediction of incompressible flows. Int. Journal for Numerical Methods in Fluids \textbf{22}(6), 549--565 (1996)
* Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics, third edn. Springer Berlin.


* Durst, F., Sch\"afer, M., Wechsler, K.: Efficient simulation of incompressible viscous flows on parallel computers. In: E.H. Hirschel (ed.) Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, vol. 52(1), pp. 87--101. Vieweg (1996)
* Garcia-Villalba, M., Li, N., Rodi, W., Leschziner, M.A., 2009. Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill. Journal of Fluid Mechanics 627, 55-96.  


* Ferziger, J.H., Peri{\'c}, M.: Computational Methods for Fluid Dynamics, third edn. Springer Berlin (2002)
* Germano, M., Piomelli, U., Moin, P., Cabot, W.H., 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3, 1760-1765.


* Garc\'ia-Villalba, M., Li, N., Rodi, W., Leschziner, M.A.: Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill. Journal of Fluid Mechanics \textbf{627}, 55--96 (2009)
* Jacobs, W., 1938. Strömung hinter einem einzelnen Rauhigkeitselement. Ingenieur-Archiv 9 (5), 343-355.


* Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A \textbf{3}, 1760--1765 (1991)
* Kharoua, N., Khezzar, L., 2013. Large-eddy simulation study of turbulent flow around smooth and rough domes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (12), 2686-2700.


* Jacobs, W.: Str{\"o}mung hinter einem einzelnen {R}auhigkeitselement. Ingenieur-Archiv \textbf{9}(5), 343--355 (1938)
* Khosla, P.K., Rubin, S.G., 1974. A diagonally dominant second-order accurate implicit scheme. Computers & Fluids 2 (2), 207-209.


* Kharoua, N., Khezzar, L.: Large-eddy simulation study of turbulent flow around smooth and rough domes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science \textbf{227}(12), 2686--2700 (2013)
* Kim, W.W., Menon, S., 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA Paper No. AIAA-97-0210.


* Khosla, P.K., Rubin, S.G.: A diagonally dominant second-order accurate implicit scheme. Computers \& Fluids \textbf{2}(2), 207--209 (1974)
* Klein, M., Sadiki, A., Janicka, J., 2003. A digital filter based generation of inflow data for spatially-developing direct numerical or large-eddy simulations. Journal of Computational Physics 186, 652-665.


* Kim, W.W., Menon, S.: Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA Paper No. AIAA-97-0210  (1997)
* Knupp, P.M., 2003. Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design 39, 217-241.


* Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially--developing direct numerical or large--eddy simulations. Journal of Computational Physics \textbf{186}, 652--665 (2003)
* Lawson, T.V., 1968. Methods of producing velocity profiles in wind tunnels. Atmospheric Environment (1967) 2 (1), 73-76.


* Lawson, T.V.: Methods of producing velocity profiles in wind tunnels. Atmospheric Environment (1967) \textbf{2}(1), 73--76 (1968)
* Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A 4, 633-635.


* Lilly, D.K.: A proposed modification of the {G}ermano subgrid-scale closure method. Physics of Fluids A \textbf{4}, 633--635 (1992)
* Maher, F.J., 1965. Wind loads on basic dome shapes. Journal of the Structural Division 91 (3), 219-228.


* Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially--developing boundary layer simulations. Journal of Computational Physics \textbf{140}, 223--258 (1998)
* Manhart, M., 1998. Vortex shedding from a hemisphere in a turbulent boundary layer. Theoretical and Computational Fluid Dynamics 12 (1), 1-28.


* Maher, F.J.: Wind loads on basic dome shapes. Journal of the Structural Division \textbf{91}(3), 219--228 (1965)
* Martinuzzi, R., Tropea, C., 1993. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Journal of Fluids Engineering 115 (1), 85-92.


* Manhart, M.: Vortex shedding from a hemisphere in a turbulent boundary layer. Theoretical and {C}omputational {F}luid {D}ynamics \textbf{12}(1), 1--28 (1998)
* Meroney, R.N., Letchford, C.W., Sarkar, P.P., 2002. Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer. Wind and Structures 5 (2-4), 347-358.


* Martinuzzi, R., Tropea, C.: \ch{The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow}. Journal of Fluids Engineering \textbf{115}(1), 85--92 (1993)
* Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62 (3), 183-200.


* Meroney, R.N., Letchford, C.W., Sarkar, P.P.: Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer. Wind and Structures \textbf{5}(2--4), 347--358 (2002)
* Okamoto, S., Sunabashiri, Y., 1992. Vortex shedding from a circular cylinder of finite length placed on a ground plane. Journal of Fluids Engineering 114 (4), 512-521.


* Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion \textbf{62}(3), 183--200 (1999)
* Pattenden, R.J., Turnock, S.R., Zhang, X., 2005. Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Experiments in Fluids 39 (1), 10-21.


* Okamoto, S., Sunabashiri, Y.: Vortex shedding from a circular cylinder of finite length placed on a ground plane. Journal of Fluids Engineering \textbf{114}(4), 512--521 (1992)
* Piomelli, U., Chasnov, J.R., 1996. Large-eddy simulations: Theory and applications. In: M. Hallbäck, D. Henningson, A. Johansson, P. Alfredson (eds.) Turbulence and Transition Modeling, pp. 269-331. Kluwer.


* Pattenden, R.J., Turnock, S.R., Zhang, X.: Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Experiments in Fluids \textbf{39}(1), 10--21 (2005)
* Rhie, C.M., Chow, W.L., 1983. Numerical study of the turbulent flow past an airfoil with trailing-edge separation. AIAA Journal 21 (11), 1525-1532.


* Piomelli, U., Chasnov, J.R.: Large--eddy simulations: Theory and applications. In: M.~Hallb\"ack, D.~Henningson, A.~Johansson, P.~Alfredson (eds.) Turbulence and Transition Modeling, pp. 269--331. Kluwer (1996)
* Sakamoto, H., Arie, M., 1983. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. Journal of Fluid Mechanics 126, 147-165.


* Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing-edge separation. AIAA Journal \textbf{21}(11), 1525--1532 (1983)
* Savory, E., Toy, N., 1986. Hemisphere and hemisphere-cylinders in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 23, 345-364.


* Sakamoto, H., Arie, M.: Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. Journal of Fluid Mechanics \textbf{126}, 147--165 (1983)
* Savory, E., Toy, N., 1988. The separated shear layers associated with hemispherical bodies in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 28 (1), 291-300.


* Sargison, J.E., Walker, G.J., Bond, V., Chevalier, G.: Experimental review of devices to artificially thicken wind tunnel boundary layers. In: M.~Behnia, W.~Lin, G.D. McBain (eds.) Proceedings of the Fifteenth Australasian Fluid Mechanics Conference (CD-ROM). The University of Sydney, Sydney, Australia (2004). AFMC00091
* Scheit, C., Nusser, K., Hager, G., Becker, S., Zeiser, T., Wellein, G., 2014. Optimizing the FASTEST-3D CFD code for massive parallelism. In: 26th Int. Conf. on Comp. Fluid Dynamics, ParCFD 2014. Norway, Trondheim.


* Savory, E., Toy, N.: Hemisphere and hemisphere-cylinders in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics \textbf{23}, 345--364 (1986)
* Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S., 2009. Turbulent boundary layers up to <math>Re_\theta= 2500</math> studied through simulation and experiment. Physics of Fluids 21 (5), 51,702.


* Savory, E., Toy, N.: The separated shear layers associated with hemispherical bodies in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics \textbf{28}(1), 291--300 (1988)
* Schmidt, S., Breuer, M., 2015. Extended synthetic turbulence inflow generator within a hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded flows. Flow, Turbulence and Combustion 95 (4), 669-707.


* Scheit, C., Nusser, K., Hager, G., Becker, S., Zeiser, T., Wellein, G.: Optimizing the {FASTEST-3D} {CFD} code for massive parallelism. In: 26th Int. Conf. on Comp. Fluid Dynamics, ParCFD 2014. Norway, Trondheim (2014)
* Schmidt, S., Breuer, M., 2016. Application and extension of a synthetic turbulence inflow generator within a hybrid LES-URANS methodology. In: J. Fröhlich, H. Kuerten, B.J. Geurts, V. Armenio (eds.) ERCOFTAC Series, Direct and Large-Eddy Simulation X, 10th Int. ERCOFTAC Workshop on Direct and Large-Eddy Simulation: DLES-10, Limassol, Cyprus, May 27-29, 2015. Springer Science+Business Media B.V. To appear


* Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to {Re}$_\theta= 2500$ studied through simulation and experiment. Physics of Fluids \textbf{21}(5), 51,702 (2009)
* Schmidt, S., Breuer, M., 2016. Source term based synthetic turbulence inflow generator for eddy–resolving predictions of an airfoil flow including a laminar separation bubble. in preparation.


* Schmidt, S., Breuer, M.: Extended synthetic turbulence inflow generator within a hybrid {LES--URANS} methodology for the prediction of non--equilibrium wall--bounded flows. Flow, Turbulence and Combustion \textbf{95}(4), 669--707 (2015)
* Sergent, E., 2002. Vers une méthodologie de couplage entre la simulation des grandes échelles et les modèles statistiques. Ph.D. thesis, Ecully, Ecole Centrale de Lyon.


\bibitem{Schmidt2016}
* Simpson, R.L., Long, C.H., Byun, G., 2002. Study of vortical separation from an axisymmetric hill. International Journal of Heat and Fluid Flow 23 (5), 582-591.
Schmidt, S., Breuer, M.: \ch{Application and extension of a synthetic
  turbulence inflow generator within a hybrid {LES--URANS} methodology}.
\newblock In: J.~Fr\"ohlich, H.~Kuerten, B.J. Geurts, V.~Armenio (eds.)
  ERCOFTAC Series, Direct and Large-Eddy Simulation X, 10th Int.\ {ERCOFTAC}
  Workshop on Direct and Large--Eddy Simulation: {DLES-10}, Limassol, Cyprus,
  May 27--29, 2015. Springer Science+Business Media B.V. (2016).
\newblock To appear


\bibitem{sergent2002vers}
* Smagorinsky, J., 1963: General circulation experiments with the primitive equations I: The basic experiment. Monthly Weather Review 91 (3), 99-165.
Sergent, E.: Vers une methodologie de couplage entre la simulation des grandes
  echelles et les modeles statistiques.
\newblock Ph.D. thesis, Ecully, Ecole Centrale de Lyon (2002)


\bibitem{simpson2002}
* Spalart, P.R., Allmaras, S.R., 1992. A one-equation turbulence model for aerodynamic flows. AIAA Journal 94, 92-439.
Simpson, R.L., Long, C.H., Byun, G.: Study of vortical separation from an
  axisymmetric hill.
\newblock International Journal of Heat and Fluid Flow \textbf{23}(5), 582--591
  (2002)


\bibitem{smagorinsky}
* Tamai, N., Asaeda, T., Tanaka, N., 1987. Vortex structures around a hemispheric hump. Boundary-Layer Meteorology 39 (3), 301-314.
Smagorinsky, J.: General circulation experiments with the primitive equations
  {I}: {T}he basic experiment.
\newblock Monthly Weather Review \textbf{91}(3), 99--165 (1963)


\bibitem{spalart1992}
* Tamura, T., Kuwahara, K., Suzuki, M., 1990. Numerical study of wind pressures on a domed roof and near wake flows. Journal of Wind Engineering and Industrial Aerodynamics 36, 1001-1010.
Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic
  flows.
\newblock AIAA {J}ournal \textbf{94}, 92--439 (1992)


\bibitem{tamai1987}
* Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.,1982. Time-averaged aerodynamic forces acting on a hemisphere immersed in a turbulent boundary. Journal of Wind Engineering and Industrial Aerodynamics 9 (3), 257-273.
Tamai, N., Asaeda, T., Tanaka, N.: Vortex structures around a hemispheric hump.
\newblock Boundary-{L}ayer {M}eteorology \textbf{39}(3), 301--314 (1987)


\bibitem{tamura1990}
* Tavakol, M.M., Abouali, O., Yaghoubi, M., 2015. Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling 39 (13), 3596-3618.
Tamura, T., Kuwahara, K., Suzuki, M.: Numerical study of wind pressures on a
  domed roof and near wake flows.
\newblock Journal of Wind Engineering and Industrial Aerodynamics \textbf{36},
  1001--1010 (1990)


\bibitem{taniguchi1982}
* Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M., 2010. Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science 34 (5), 538-553.
Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.: Time-averaged aerodynamic
  forces acting on a hemisphere immersed in a turbulent boundary.
\newblock Journal of Wind Engineering and Industrial Aerodynamics
  \textbf{9}(3), 257--273 (1982)


\bibitem{tavakol2014}
* Taylor, T.J., 1992. Wind pressures on a hemispherical dome. Journal of Wind Engineering and Industrial Aerodynamics 40 (2), 199-213.
Tavakol, M.M., Abouali, O., Yaghoubi, M.: Large eddy simulation of turbulent
  flow around a wall mounted hemisphere.
\newblock Applied Mathematical Modelling \textbf{39}(13), 3596--3618 (2015)


\bibitem{tavakol2010}
* Toy, N., Moss, W.D., Savory, E., 1983. Wind tunnel studies on a dome in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 11 (1), 201-212.
Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M.: Air flow aerodynamic on a
  wall-mounted hemisphere for various turbulent boundary layers.
\newblock Experimental Thermal and Fluid Science \textbf{34}(5), 538--553
  (2010)


\bibitem{taylor1992}
* Wilcox, D.C., 1998. Turbulence Modeling for CFD, second edn. DCW Industries, Inc., La Canada CA.
Taylor, T.J.: Wind pressures on a hemispherical dome.
\newblock Journal of Wind Engineering and Industrial Aerodynamics
  \textbf{40}(2), 199--213 (1992)


\bibitem{toy1983}
<!--* Wood, J.N., De Nayer, G., Schmidt, S., Breuer, M., 2016. Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere. Journal of Flow, Turbulence and Combustion, DOI 10.1007/s10494-015-9690-5.-->
Toy, N., Moss, W.D., Savory, E.: Wind tunnel studies on a dome in turbulent
* Wood, J.N., De Nayer, G., Schmidt, S., Breuer, M., 2016. Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere. Flow, Turbulence and Combustion 97 (1), 79-119.
  boundary layers.
\newblock Journal of Wind Engineering and Industrial Aerodynamics
  \textbf{11}(1), 201--212 (1983)


\bibitem{wilcox1998}
* Yaghoubi, M.A., 1991. Air flow patterns around domed roof buildings. Renewable Energy 1 (3), 345-350.
Wilcox, D.C.: Turbulence Modeling for {CFD}, second edn.
\newblock DCW {I}ndustries, Inc., La Ca\~nada CA (1998)


\bibitem{yaghoubi1991}
* Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G., 1992. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 4 (7), 1510-1520.
Yaghoubi, M.A.: Air flow patterns around domed roof buildings.
\newblock Renewable {E}nergy \textbf{1}(3), 345--350 (1991)


\bibitem{yakhot1992}
<!--
Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.:
* Lund, T.S., Wu, X., Squires, K.D., 1998. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Journal of Computational Physics 140, 223-258.
  Development of turbulence models for shear flows by a double expansion
  technique.
\newblock Physics of Fluids \textbf{4}(7), 1510--1520 (1992)


* Sargison, J.E., Walker, G.J., Bond, V., Chevalier, G.,2004. Experimental review of devices to artificially thicken wind tunnel boundary layers. In: M. Behnia, W. Lin, G.D. McBain (eds.) Proceedings of the Fifteenth Australasian Fluid Mechanics Conference (CD-ROM). The University of Sydney, Sydney, Australia. AFMC00091-->


<br/>
<br/>

Latest revision as of 13:50, 12 February 2017

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


References

  • Acarlar, M.S., Smith, C.R., 1987. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. Journal of Fluid Mechanics 175, 1-41.
  • Adrian, R.J., Yao, C.S., 1986. Power spectra of fluid velocities measured by laser-Doppler velocimetry. Experiments in Fluids 5 (1), 17-28.
  • Baker, C.J., 1980. The turbulent horseshoe vortex. Journal of Wind Engineering and Industrial Aerodynamics 6 (1), 9-23.
  • Benedict, L.H., Nobach, H., Tropea, C., 2000. Estimation of turbulent velocity spectra from laser-Doppler data. Measurement Science and Technology 11 (8), 1089-1104.
  • Bennington, J.L., 2004. Effects of various shaped roughness elements in two-dimensional high Reynolds number turbulent boundary layers. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.
  • Breuer, M., 2002. Direkte Numerische Simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Habilitationsschrift, Universität Erlangen–Nürnberg, Berichte aus der Strömungstechnik. Shaker Verlag, Aachen, Germany.
  • Breuer, M., De Nayer, G., Münsch, M., Gallinger, T., Wüchner, R., 2012. Fluid-structure interaction using a partitioned semi-implicit predictor-corrector coupling scheme for the application of large-eddy simulation. Journal of Fluids and Structures 29, 107-130.
  • Broersen, P.M.T., de Waele, S., Bos, R., 2000. The accuracy of time series analysis for laser-Doppler velocimetry. In: Proceedings of the 10th International Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal.
  • Byun, G., Simpson, R.L., 2006. Structure of three-dimensional separated flow on an axisymmetric bump. AIAA Journal 44 (5), 999-1008.
  • Byun, G., Simpson, R.L., 2010. Surface-pressure fluctuations from separated flow over an axisymmetric bump. AIAA Journal 48 (10), 2397-2405.
  • Cheng, C.M., Fu, C.L., 2010. Characteristic of wind loads on a hemispherical dome in smooth flow and turbulent boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics 98 (6), 328-344.
  • Counihan, J., 1969. An improved method of simulating an atmospheric boundary layer in a wind tunnel. Atmospheric Environment (1967) 3 (2), 197-214.
  • Counihan, J., 1975. Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880-1972. Atmospheric Environment (1967) 9 (10), 871-905.
  • Druault, P., Lardeau, S., Bonnet, J.-P., Coifft, F., Lamballais, E., Largeau, J. F., Perret, L., 2004, Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA J., vol. 42 (3) , pp. 447-456.
  • Durst, F., Schäfer, M., 1996. A parallel block-structured multigrid method for the prediction of incompressible flows. Int. Journal for Numerical Methods in Fluids 22 (6), 549-565.
  • Durst, F., Schäfer, M., Wechsler, K., 1996. Efficient simulation of incompressible viscous flows on parallel computers. In: E.H. Hirschel (ed.) Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, vol. 52 (1), pp. 87-101. Vieweg.
  • Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics, third edn. Springer Berlin.
  • Garcia-Villalba, M., Li, N., Rodi, W., Leschziner, M.A., 2009. Large-eddy simulation of separated flow over a three-dimensional axisymmetric hill. Journal of Fluid Mechanics 627, 55-96.
  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H., 1991. A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3, 1760-1765.
  • Jacobs, W., 1938. Strömung hinter einem einzelnen Rauhigkeitselement. Ingenieur-Archiv 9 (5), 343-355.
  • Kharoua, N., Khezzar, L., 2013. Large-eddy simulation study of turbulent flow around smooth and rough domes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (12), 2686-2700.
  • Khosla, P.K., Rubin, S.G., 1974. A diagonally dominant second-order accurate implicit scheme. Computers & Fluids 2 (2), 207-209.
  • Kim, W.W., Menon, S., 1997. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. AIAA Paper No. AIAA-97-0210.
  • Klein, M., Sadiki, A., Janicka, J., 2003. A digital filter based generation of inflow data for spatially-developing direct numerical or large-eddy simulations. Journal of Computational Physics 186, 652-665.
  • Knupp, P.M., 2003. Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design 39, 217-241.
  • Lawson, T.V., 1968. Methods of producing velocity profiles in wind tunnels. Atmospheric Environment (1967) 2 (1), 73-76.
  • Lilly, D.K., 1992. A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A 4, 633-635.
  • Maher, F.J., 1965. Wind loads on basic dome shapes. Journal of the Structural Division 91 (3), 219-228.
  • Manhart, M., 1998. Vortex shedding from a hemisphere in a turbulent boundary layer. Theoretical and Computational Fluid Dynamics 12 (1), 1-28.
  • Martinuzzi, R., Tropea, C., 1993. The flow around surface-mounted, prismatic obstacles placed in a fully developed channel flow. Journal of Fluids Engineering 115 (1), 85-92.
  • Meroney, R.N., Letchford, C.W., Sarkar, P.P., 2002. Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer. Wind and Structures 5 (2-4), 347-358.
  • Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62 (3), 183-200.
  • Okamoto, S., Sunabashiri, Y., 1992. Vortex shedding from a circular cylinder of finite length placed on a ground plane. Journal of Fluids Engineering 114 (4), 512-521.
  • Pattenden, R.J., Turnock, S.R., Zhang, X., 2005. Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Experiments in Fluids 39 (1), 10-21.
  • Piomelli, U., Chasnov, J.R., 1996. Large-eddy simulations: Theory and applications. In: M. Hallbäck, D. Henningson, A. Johansson, P. Alfredson (eds.) Turbulence and Transition Modeling, pp. 269-331. Kluwer.
  • Rhie, C.M., Chow, W.L., 1983. Numerical study of the turbulent flow past an airfoil with trailing-edge separation. AIAA Journal 21 (11), 1525-1532.
  • Sakamoto, H., Arie, M., 1983. Vortex shedding from a rectangular prism and a circular cylinder placed vertically in a turbulent boundary layer. Journal of Fluid Mechanics 126, 147-165.
  • Savory, E., Toy, N., 1986. Hemisphere and hemisphere-cylinders in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 23, 345-364.
  • Savory, E., Toy, N., 1988. The separated shear layers associated with hemispherical bodies in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 28 (1), 291-300.
  • Scheit, C., Nusser, K., Hager, G., Becker, S., Zeiser, T., Wellein, G., 2014. Optimizing the FASTEST-3D CFD code for massive parallelism. In: 26th Int. Conf. on Comp. Fluid Dynamics, ParCFD 2014. Norway, Trondheim.
  • Schlatter, P., Orlu, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S., 2009. Turbulent boundary layers up to studied through simulation and experiment. Physics of Fluids 21 (5), 51,702.
  • Schmidt, S., Breuer, M., 2015. Extended synthetic turbulence inflow generator within a hybrid LES-URANS methodology for the prediction of non-equilibrium wall-bounded flows. Flow, Turbulence and Combustion 95 (4), 669-707.
  • Schmidt, S., Breuer, M., 2016. Application and extension of a synthetic turbulence inflow generator within a hybrid LES-URANS methodology. In: J. Fröhlich, H. Kuerten, B.J. Geurts, V. Armenio (eds.) ERCOFTAC Series, Direct and Large-Eddy Simulation X, 10th Int. ERCOFTAC Workshop on Direct and Large-Eddy Simulation: DLES-10, Limassol, Cyprus, May 27-29, 2015. Springer Science+Business Media B.V. To appear
  • Schmidt, S., Breuer, M., 2016. Source term based synthetic turbulence inflow generator for eddy–resolving predictions of an airfoil flow including a laminar separation bubble. in preparation.
  • Sergent, E., 2002. Vers une méthodologie de couplage entre la simulation des grandes échelles et les modèles statistiques. Ph.D. thesis, Ecully, Ecole Centrale de Lyon.
  • Simpson, R.L., Long, C.H., Byun, G., 2002. Study of vortical separation from an axisymmetric hill. International Journal of Heat and Fluid Flow 23 (5), 582-591.
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations I: The basic experiment. Monthly Weather Review 91 (3), 99-165.
  • Spalart, P.R., Allmaras, S.R., 1992. A one-equation turbulence model for aerodynamic flows. AIAA Journal 94, 92-439.
  • Tamai, N., Asaeda, T., Tanaka, N., 1987. Vortex structures around a hemispheric hump. Boundary-Layer Meteorology 39 (3), 301-314.
  • Tamura, T., Kuwahara, K., Suzuki, M., 1990. Numerical study of wind pressures on a domed roof and near wake flows. Journal of Wind Engineering and Industrial Aerodynamics 36, 1001-1010.
  • Taniguchi, S., Sakamoto, H., Kiya, M., Arie, M.,1982. Time-averaged aerodynamic forces acting on a hemisphere immersed in a turbulent boundary. Journal of Wind Engineering and Industrial Aerodynamics 9 (3), 257-273.
  • Tavakol, M.M., Abouali, O., Yaghoubi, M., 2015. Large eddy simulation of turbulent flow around a wall mounted hemisphere. Applied Mathematical Modelling 39 (13), 3596-3618.
  • Tavakol, M.M., Yaghoubi, M., Masoudi~Motlagh, M., 2010. Air flow aerodynamic on a wall-mounted hemisphere for various turbulent boundary layers. Experimental Thermal and Fluid Science 34 (5), 538-553.
  • Taylor, T.J., 1992. Wind pressures on a hemispherical dome. Journal of Wind Engineering and Industrial Aerodynamics 40 (2), 199-213.
  • Toy, N., Moss, W.D., Savory, E., 1983. Wind tunnel studies on a dome in turbulent boundary layers. Journal of Wind Engineering and Industrial Aerodynamics 11 (1), 201-212.
  • Wilcox, D.C., 1998. Turbulence Modeling for CFD, second edn. DCW Industries, Inc., La Canada CA.
  • Wood, J.N., De Nayer, G., Schmidt, S., Breuer, M., 2016. Experimental Investigation and Large-Eddy Simulation of the Turbulent Flow past a Smooth and Rigid Hemisphere. Flow, Turbulence and Combustion 97 (1), 79-119.
  • Yaghoubi, M.A., 1991. Air flow patterns around domed roof buildings. Renewable Energy 1 (3), 345-350.
  • Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G., 1992. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 4 (7), 1510-1520.





Contributed by: Jens Nikolas Wood, Guillaume De Nayer, Stephan Schmidt, Michael Breuer — Helmut-Schmidt Universität Hamburg

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024