Jump to navigation Jump to search
 
(47 intermediate revisions by one other user not shown)
Line 1: Line 1:


=Fluid-structure interaction in turbulent flow past cylinder/plate configuration II=
=Fluid-structure interaction in turbulent flow past cylinder/plate configuration II (Second swiveling mode)=
{{UFRHeader
{{UFRHeader
|area=2
|area=2
Line 11: Line 11:
= Abstract =
= Abstract =


The investigation of the bidirectional coupling between a fluid flow
The objective of the present contribution is to provide a second well-defined benchmark
and a structure motion is a growing branch of research in science
case for fluid-structure interaction as a growing branch of research in science
and industry. Applications of so-called fluid-structure interactions
and industry. Similar to the previous case [http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-13_Description UFR 2-13] (denoted FSI-PfS-1'''a''' in Kalmbach (2014) and De Nayer et al. (2014); Note
(FSI) are widespread. To improve coupled numerical FSI simulations,
that the PhD thesis of Kalmbach (2014) comprises further test cases for FSI-PfS-1x and FSI-PfS-2x denoted by lower case appendages x=b or x=c not
generic experimental benchmark studies of the fluid and the
considered here) the entire study relies on a complementary experimental and numerical investigation. The same measuring techniques
structure are necessary. In this work, the coupling of a
(planar particle image velocimetry (PIV), volumetric three-component velocimetry (V3V),multiple-point laser triangulation
vortex-induced periodic deformation of a flexible structure mounted
sensor) and the same numerical methodology (partitioned FSI coupling scheme based on large-eddy simulation (LES)) is applied and will thus only partially repeated here for the sake of brevity. However, all details are available at [http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-13_Description UFR 2-13].
behind a rigid cylinder and a fully turbulent water flow performed
 
at a Reynolds number of Re = 30,470 is experimentally
 
investigated with a planar particle image velocimetry (PIV) and a
What are the differences between the previous case and the present one?
volumetric three-component velocimetry (V3V) system. To determine
For the previous configuration (FSI-PfS-1a, [http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-13_Description UFR 2-13]) the flexible
the structure displacements a multiple-point laser triangulation
structure deforms in the first swiveling mode inducing only moderate structural displacements
sensor is used. The three-dimensional fluid velocity results show
by an instability-induced excitation.  
shedding vortices behind the structure, which reaches the second
In contrast, the new case denoted FSI-PfS-2a is
swiveling mode with a frequency of about 11.2 Hz
 
corresponding to a Strouhal number of St = 0.177. Providing
* a '''movement-induced excitation'''
phase-averaged flow and structure measurements precise experimental
* with significantly '''larger deformations''' of the flexible structure  
data for coupled computational fluid dynamics (CFD) and
* in the '''second swiveling mode'''.
computational structure dynamics (CSD) validations are available for
 
this new benchmark case denoted FSI-PfS-2a. The test case possesses
In order to achieve these more challenging features of the flow and the structure,
the previous test case [http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-13_Description UFR 2-13] (FSI-PfS-1a) is slightly modified:
A 2 mm thick flexible plate is clamped behind the fixed cylinder. However, this time a rear mass
is added at the extremity of the flexible structure. Moreover, the material (para-rubber) is less stiff than in FSI-PfS-1a.
The Reynolds number is again Re = 30,470.  
 
The three-dimensional fluid velocity results show shedding vortices behind the structure, which reaches the second
swiveling mode with a frequency of about 11.25 Hz corresponding to a Strouhal number of St = 0.179 (see Fig. 1). Providing
phase-averaged flow and structure measurements, precise experimental data for coupled computational fluid dynamics (CFD) and
computational structure dynamics (CSD) validations are available for this new benchmark case. The test case possesses
four main advantages:
four main advantages:


Line 39: Line 48:




[[Image:graphical_abstract2.png|800px]]
Besides these experimental investigations detailed predictions based on LES are available.
Particular attention has been paid to the computational model
and the numerical set-up. Special seven-parameters shell elements are applied to precisely
model the flexible structure. Structural tests are carried out to approximate the optimal
structural parameters. A fine and smooth mesh for the flow calculation has been generated in order to correctly
predict the wide range of different flow structures presents near and behind the flexible rubber
plate. In accordance with the measurements, phase-averaging is applied to the numerical results allowing a detailed
comparison with the phase-averaged experimental data. Both are found to be in close agreement
exhibiting a structure deformation in the second swiveling mode with similar frequencies and
amplitudes. Finally, a sensitivity study is carried out to show the influence of different physical
parameters (e.g. Young’s modulus) and modeling aspects (e.g. subgrid-scale model) on the FSI
phenomenon.
 
<br/>
----
 
 
[[Image:graphical_abstract3.png|800px|caption]]  
 
Fig. 1: Flow around the flexible structure of the FSI-PfS-2a benchmark (Iso-surfaces of the velocity magnitude of
<math>u/u_{inflow} \, \operatorname{=} \, 0.79 </math>. The contours on the iso-surfaces depict the instantaneous spanwise velocity component).
 
 
 
<!-- [[Image:qnet_FSI-PfS-2a_vort_mag.png|800px|Media:qnet_FSI-PfS-2a_vort_mag_fast.avi]] [http://qnet-ercoftac.cfms.org.uk/w/images/c/c8/Qnet_FSI-PfS-2a_vort_mag_fast.avi Download movie] -->
[[Image:qnet_FSI-PfS-2a_vort_mag.png|800px|link=http://qnet-ercoftac.cfms.org.uk/w/images/c/c8/Qnet_FSI-PfS-2a_vort_mag_fast.avi]]
 
Fig. 2: Flow around the flexible structure of the FSI-PfS-2a benchmark (Vorticity magnitude) (Click on the figure to see the animation).





Latest revision as of 10:26, 10 June 2014

Fluid-structure interaction in turbulent flow past cylinder/plate configuration II (Second swiveling mode)

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Flows Around Bodies

Underlying Flow Regime 2-14

Abstract

The objective of the present contribution is to provide a second well-defined benchmark case for fluid-structure interaction as a growing branch of research in science and industry. Similar to the previous case UFR 2-13 (denoted FSI-PfS-1a in Kalmbach (2014) and De Nayer et al. (2014); Note that the PhD thesis of Kalmbach (2014) comprises further test cases for FSI-PfS-1x and FSI-PfS-2x denoted by lower case appendages x=b or x=c not considered here) the entire study relies on a complementary experimental and numerical investigation. The same measuring techniques (planar particle image velocimetry (PIV), volumetric three-component velocimetry (V3V),multiple-point laser triangulation sensor) and the same numerical methodology (partitioned FSI coupling scheme based on large-eddy simulation (LES)) is applied and will thus only partially repeated here for the sake of brevity. However, all details are available at UFR 2-13.


What are the differences between the previous case and the present one? For the previous configuration (FSI-PfS-1a, UFR 2-13) the flexible structure deforms in the first swiveling mode inducing only moderate structural displacements by an instability-induced excitation. In contrast, the new case denoted FSI-PfS-2a is

  • a movement-induced excitation
  • with significantly larger deformations of the flexible structure
  • in the second swiveling mode.

In order to achieve these more challenging features of the flow and the structure, the previous test case UFR 2-13 (FSI-PfS-1a) is slightly modified: A 2 mm thick flexible plate is clamped behind the fixed cylinder. However, this time a rear mass is added at the extremity of the flexible structure. Moreover, the material (para-rubber) is less stiff than in FSI-PfS-1a. The Reynolds number is again Re = 30,470.

The three-dimensional fluid velocity results show shedding vortices behind the structure, which reaches the second swiveling mode with a frequency of about 11.25 Hz corresponding to a Strouhal number of St = 0.179 (see Fig. 1). Providing phase-averaged flow and structure measurements, precise experimental data for coupled computational fluid dynamics (CFD) and computational structure dynamics (CSD) validations are available for this new benchmark case. The test case possesses four main advantages:

  • (i) The geometry is rather simple;
  • (ii) Kinematically, the rotation of the front cylinder is avoided;
  • (iii) The boundary conditions are well defined;
  • (iv) Nevertheless, the resulting flow features and structure displacements are challenging from the computational point of view.


Besides these experimental investigations detailed predictions based on LES are available. Particular attention has been paid to the computational model and the numerical set-up. Special seven-parameters shell elements are applied to precisely model the flexible structure. Structural tests are carried out to approximate the optimal structural parameters. A fine and smooth mesh for the flow calculation has been generated in order to correctly predict the wide range of different flow structures presents near and behind the flexible rubber plate. In accordance with the measurements, phase-averaging is applied to the numerical results allowing a detailed comparison with the phase-averaged experimental data. Both are found to be in close agreement exhibiting a structure deformation in the second swiveling mode with similar frequencies and amplitudes. Finally, a sensitivity study is carried out to show the influence of different physical parameters (e.g. Young’s modulus) and modeling aspects (e.g. subgrid-scale model) on the FSI phenomenon.




caption

Fig. 1: Flow around the flexible structure of the FSI-PfS-2a benchmark (Iso-surfaces of the velocity magnitude of . The contours on the iso-surfaces depict the instantaneous spanwise velocity component).


Qnet FSI-PfS-2a vort mag.png

Fig. 2: Flow around the flexible structure of the FSI-PfS-2a benchmark (Vorticity magnitude) (Click on the figure to see the animation).





Contributed by: Andreas Kalmbach, Guillaume De Nayer, Michael Breuer — Helmut-Schmidt Universität Hamburg

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024