EXP 1-4
Axisymmetric drop impact dynamics on a wall film of the same liquid
Abstract
The dynamics of the normal impact of a single drop onto a thin wall film of the same liquid is characterized using high-speed shadowgraphy. The initial kinetic energy of the drop is sufficiently high to give rise to the formation of a notable crown (corona) but sufficiently low to avoid any disintegration of the crown. Splashing is thus avoided and the entire dynamics of the drop-film interaction is laminar and rotational symmetric. This makes the data set especially useful for advancement and validation of interface-resolving numerical methods for two-phase flows. In addition to experimental videos, time-resolved experimental data on three characteristic dimensions of the crown (height, base diameter, top diameter) are provided for two different impact velocities. The experimental results are utilized to develop an advanced surface tension model for numerical simulations with a diffuse-interface phase-field method.
Contributed by: Milad Bagheri, Bastian Stumpf, Ilia V. Roisman, Cameron Tropea, Jeanette Hussong, Martin Wörner, Holger Marschall — Technical University of Darmstadt and Karlsruhe Institute of Technology
© copyright ERCOFTAC 2024