UFR 3-35 Description

From KBwiki
Jump to navigation Jump to search

Cylinder-wall junction flow

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Underlying Flow Regime 3-35

Description

Introduction

Flow around bluff bodies such as circular cylinders is among the basic flow configurations yet not fully understood. The field of application of this configuration is broad, e.g. turbomachinery, aeronautical engineering, or scour of bridge piers embedded in river beds.

This flow situation was investigated in the vertical symmetry plane upstream of a cylinder mounted on a flat plate. The oncoming flow is a fully-developed turbulent open-channel flow, and due to the deceleration by the obstacle an adverse pressure gradient occurs in the main flow direction. The blockage of the body leads to a deflection of the flow in vertical direction downwards to the cylinder-wall junction. Therefore, a vertical pressure gradient occurs as well, which transports high-momentum fluid from the top to the bottom part. While the downflow approaches the bottom plate, a boundary layer develops at the flow facing edge of the cylinder. When the downflow impinges at the bottom plate it is deflected in all directions: (i) towards the cylinder rolling up to a small-scale foot-vortex; (ii) in the spanwise direction around the cylinder; and (iii) in the upstream direction forming a wall-parallel jet (Dargahi 1989). This jet accelerates from the point of deflection onwards and exerts large shear stress on the bottom wall. Some parts of the down-flow that are deflected in the upstream direction are not contributing to this jet but are blocked by the approaching flow causing a coil-up: the well-known horseshoe vortex (HV).

Brief Review of UFR Studies and Choice of Test Case


We studied the flow around a wall-mounted slender () circular cylinder with infinite height. The flow depth was and the width of the rectangular channel was . The investigated Reynolds number was approximately , the Froude number was in the subcritical region. As inflow condition we applied a fully-developed open-channel flow.

Sketch of flow configration


Contributed by: Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart — Technical University Munich

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2019