Best Practice Advice AC7-04: Difference between revisions
m (Dave.Ellacott moved page Best Practice Advice AC7-04 to Lib:Best Practice Advice AC7-04) |
|||
Line 15: | Line 15: | ||
==References== | ==References== | ||
<br/> | <br/> | ||
[1] T. Puiseux, Simulations numériques pour l’Imagerie par Résonance Magnétique à contraste de phase. PhD thesis, Universit de Montpellier, 2019. | |||
[2] T. Puiseux, A. Sewonu, O. Meyrignac, H. Rousseau, F. Nicoud, S. Mendez, and R. Moreno, “Reconciling PC-MRI and CFD: an in-vitro study,” NMR in Biomedicine, vol. 32, no. 5, p. e4063, 2019. | |||
[3] T. Puiseux, A. Sewonu, R. Moreno, S. Mendez, and F. Nicoud, “Numerical simulation of time-resolved 3d phase-contrast magnetic resonance imaging,” PLoS ONE, vol. 16, no. 3, p. e0248816, 2021. | |||
[4] V. Moureau and G. Lartigue, “YALES2.” https://www.coria-cfd.fr/index.php/YALES2, 2021. Accessed: 2021-06-25. | |||
[5] V. Moureau, P. Domingo, and L. Vervisch, “Design of a massively parallel CFD code for complex geometries,” Comptes Rendus Mecanique, vol. 339, no. 2, p. 141–148, 2011. | |||
[6] V. Moureau, P. Domingo, and L. Vervisch, “From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling,” Combustion and Flame, vol. 158, p. 1340–1357, 2011. | |||
[7] A. Chorin, “Numerical solution of the Navier-Stokes equations,” Mathematics of Computation, vol. 22, p. 745–762, 1968. | |||
[8] C. Chnafa, S. Mendez, and F. Nicoud, “Image-based large-eddy simulation in a realistic left heart,” Computers & Fluids, vol. 94, p. 173–187, 2014. | |||
[9] M. Malandain, N. Maheu, and V. Moureau, “Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines,” Journal of Computational Physics, vol. 238, no. Supplement C, pp. 32–47, 2013. | |||
[10] S. Mendez and F. Nicoud, “YALES2BIO.” https://imag.umontpellier.fr/~yales2bio/, 2021. Accessed: 2021-06-25. | |||
[11] J. Kim and P. Moin, “Application of a fractional-step method to incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 59, no. 2, pp. 308–323, 1985. | |||
[12] F. Nicoud, H. Toda, O. Cabrit, S. Bose, and J. Lee, “Using singular values to build a subgrid-scale model for large eddy simulations,” Physics of Fluids, vol. 23, no. 8, | |||
p. 085106, 2011. | |||
[13] F. Nicoud, C. Chnafa, J. Sigüenza, V. Zmijanovic, and S. Mendez, Large-Eddy Simulation of Turbulence in Cardiovascular Flows, pp. 147–167. Cham: Springer International Publishing, 2018. | |||
[14] H. Baya Toda, O. Cabrit, K. Truffin, G. Bruneaux, and F. Nicoud, “Assessment of subgrid-scale models with an les-dedicated experimental database: the pulsatile impinging jet in turbulent cross- flow,” Physics of Fluids, vol. 26, no. 7, p. 075108, 2014. | |||
[15] J. Sigüenza, S. Mendez, D. Ambard, F. Dubois, F. Jourdan, R. Mozul, and F. Nicoud, | |||
“Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes,” Journal of Computational Physics, vol. 322, pp. 723– 746, 2016. | |||
[16] D. Steinman, C. Ethier, and B. Rutt, “Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows,” Journal of Magnetic Resonance, vol. 7, no. 2, pp. 339–346, 1997. | |||
[17] C. Chnafa, S. Mendez, and F. Nicoud, “Image-based simulations show important flow fluctuations in a normal left ventricle: What could be the implications?,” Annals of Biomedical Engineering, vol. 44, no. 11, p. 3346–3358, 2016. | |||
[18] S. Pope, Turbulent Flows. Cambridge University Press, 2000. | |||
---- | ---- | ||
{{ACContribs | {{ACContribs |
Revision as of 08:18, 26 July 2021
A pulsatile 3D flow relevant to thoracic hemodynamics: CFD - 4D MRI comparison
Application Challenge AC7-04 © copyright ERCOFTAC 2021
Best Practice Advice
Key Fluid Physics
Application Uncertainties
Computational Domain and Boundary Conditions
Discretisation and Grid Resolution
Physical Modelling
Recommendations for Future Work
References
[1] T. Puiseux, Simulations numériques pour l’Imagerie par Résonance Magnétique à contraste de phase. PhD thesis, Universit de Montpellier, 2019.
[2] T. Puiseux, A. Sewonu, O. Meyrignac, H. Rousseau, F. Nicoud, S. Mendez, and R. Moreno, “Reconciling PC-MRI and CFD: an in-vitro study,” NMR in Biomedicine, vol. 32, no. 5, p. e4063, 2019.
[3] T. Puiseux, A. Sewonu, R. Moreno, S. Mendez, and F. Nicoud, “Numerical simulation of time-resolved 3d phase-contrast magnetic resonance imaging,” PLoS ONE, vol. 16, no. 3, p. e0248816, 2021.
[4] V. Moureau and G. Lartigue, “YALES2.” https://www.coria-cfd.fr/index.php/YALES2, 2021. Accessed: 2021-06-25.
[5] V. Moureau, P. Domingo, and L. Vervisch, “Design of a massively parallel CFD code for complex geometries,” Comptes Rendus Mecanique, vol. 339, no. 2, p. 141–148, 2011.
[6] V. Moureau, P. Domingo, and L. Vervisch, “From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling,” Combustion and Flame, vol. 158, p. 1340–1357, 2011.
[7] A. Chorin, “Numerical solution of the Navier-Stokes equations,” Mathematics of Computation, vol. 22, p. 745–762, 1968.
[8] C. Chnafa, S. Mendez, and F. Nicoud, “Image-based large-eddy simulation in a realistic left heart,” Computers & Fluids, vol. 94, p. 173–187, 2014.
[9] M. Malandain, N. Maheu, and V. Moureau, “Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines,” Journal of Computational Physics, vol. 238, no. Supplement C, pp. 32–47, 2013.
[10] S. Mendez and F. Nicoud, “YALES2BIO.” https://imag.umontpellier.fr/~yales2bio/, 2021. Accessed: 2021-06-25.
[11] J. Kim and P. Moin, “Application of a fractional-step method to incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 59, no. 2, pp. 308–323, 1985.
[12] F. Nicoud, H. Toda, O. Cabrit, S. Bose, and J. Lee, “Using singular values to build a subgrid-scale model for large eddy simulations,” Physics of Fluids, vol. 23, no. 8, p. 085106, 2011.
[13] F. Nicoud, C. Chnafa, J. Sigüenza, V. Zmijanovic, and S. Mendez, Large-Eddy Simulation of Turbulence in Cardiovascular Flows, pp. 147–167. Cham: Springer International Publishing, 2018.
[14] H. Baya Toda, O. Cabrit, K. Truffin, G. Bruneaux, and F. Nicoud, “Assessment of subgrid-scale models with an les-dedicated experimental database: the pulsatile impinging jet in turbulent cross- flow,” Physics of Fluids, vol. 26, no. 7, p. 075108, 2014.
[15] J. Sigüenza, S. Mendez, D. Ambard, F. Dubois, F. Jourdan, R. Mozul, and F. Nicoud, “Validation of an immersed thick boundary method for simulating fluid-structure interactions of deformable membranes,” Journal of Computational Physics, vol. 322, pp. 723– 746, 2016.
[16] D. Steinman, C. Ethier, and B. Rutt, “Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows,” Journal of Magnetic Resonance, vol. 7, no. 2, pp. 339–346, 1997.
[17] C. Chnafa, S. Mendez, and F. Nicoud, “Image-based simulations show important flow fluctuations in a normal left ventricle: What could be the implications?,” Annals of Biomedical Engineering, vol. 44, no. 11, p. 3346–3358, 2016.
[18] S. Pope, Turbulent Flows. Cambridge University Press, 2000.
Contributed by: Morgane Garreau — University of Montpellier, France
© copyright ERCOFTAC 2021