UFR 2-12 Test Case: Difference between revisions
Line 20: | Line 20: | ||
A schematic of the airflow past the TC configuration is shown in [[UFR_2-12_Test_Case#figure1|Figure 1]]. | A schematic of the airflow past the TC configuration is shown in [[UFR_2-12_Test_Case#figure1|Figure 1]]. | ||
The model is comprised of two cylinders of equal diameter aligned with the streamwise flow direction. | The model is comprised of two cylinders of equal diameter aligned with the streamwise flow direction. | ||
The polar angle, <math>{\theta}</math>, is measured from the upstream stagnation point and is positive | The polar angle, <math>{\theta}</math>, is measured from the upstream stagnation point and is positive | ||
in the clockwise direction. | in the clockwise direction. | ||
Revision as of 11:03, 26 October 2012
Turbulent Flow Past Two-Body Configurations
Flows Around Bodies
Underlying Flow Regime 2-12
Test Case Study
Brief Description of the Study Test Case
A detailed description of the chosen test case (TC with L = 3.7D) is available at this link. So here we present only its brief overview.
A schematic of the airflow past the TC configuration is shown in Figure 1.
The model is comprised of two cylinders of equal diameter aligned with the streamwise flow direction.
The polar angle, , is measured from the upstream stagnation point and is positive
in the clockwise direction.
Figure 1: Schematic of TC configuration [3] |
Test Case Experiments
Provide a brief description of the test facility, together with the measurement techniques used. Indicate what quantities were measured and where.
Discuss the quality of the data and the accuracy of the measurements. It is recognized that the depth and extent of this discussion is dependent upon the amount and quality of information provided in the source documents. However, it should seek to address:
- How close is the flow to the target/design flow (e.g. if the flow is supposed to be two-dimensional, how well is this condition satisfied)?
- Estimation of the accuracy of measured quantities arising from given measurement technique
- Checks on global conservation of physically conserved quantities, momentum, energy etc.
- Consistency in the measurements of different quantities.
Discuss how well conditions at boundaries of the flow such as inflow, outflow, walls, far fields, free surface are provided or could be reasonably estimated in order to facilitate CFD calculations
CFD Methods
Provide an overview of the methods used to analyze the test case. This should describe the codes employed together with the turbulence/physical models examined; the models need not be described in detail if good references are available but the treatment used at the walls should explained. Comment on how well the boundary conditions used replicate the conditions in the test rig, e.g. inflow conditions based on measured data at the rig measurement station or reconstructed based on well-defined estimates and assumptions.
Discuss the quality and accuracy of the CFD calculations. As before, it is recognized that the depth and extent of this discussion is dependent upon the amount and quality of information provided in the source documents. However the following points should be addressed:
- What numerical procedures were used (discretisation scheme and solver)?
- What grid resolution was used? Were grid sensitivity studies carried out?
- Did any of the analyses check or demonstrate numerical accuracy?
- Were sensitivity tests carried out to explore the effect of uncertainties in boundary conditions?
- If separate calculations of the assessment parameters using the same physical model have been performed and reported, do they agree with one another?
Contributed by: A. Garbaruk, M. Shur and M. Strelets — New Technologies and Services LLC (NTS) and St.-Petersburg State Polytechnic University
© copyright ERCOFTAC 2024