EXP 1-4: Difference between revisions
Line 8: | Line 8: | ||
= Abstract = | = Abstract = | ||
The dynamics of the normal impact of a single drop onto a thin wall film of the same liquid is characterized experimentally (using high-speed shadowgraphy) and by numerical simulations (using a diffuse-interface phase-field method). The initial kinetic energy of the drop is sufficiently high to give rise to the formation of a notable crown (corona) but sufficiently low to avoid any disintegration of the crown. Splashing is thus avoided and the entire dynamics of the drop-film interaction is laminar and rotational symmetric. This makes the data set especially useful for advancement and validation of interface-resolving numerical methods for two-phase flows. In addition to videos of the drop-film interaction, time-resolved experimental and numerical data on three characteristic dimensions of the crown (height, base diameter, top diameter) are provided for two different impact velocities. The experimental results are used to develop an extended surface tension model for the phase field method, which is suitable for dynamic two-phase flows. | The dynamics of the normal impact of a single drop onto a thin wall film of the same liquid is characterized experimentally (using high-speed shadowgraphy) and by numerical simulations (using a diffuse-interface phase-field method). The initial kinetic energy of the drop is sufficiently high to give rise to the formation of a notable crown (corona) but sufficiently low to avoid any disintegration of the crown. Splashing is thus avoided and the entire dynamics of the drop-film interaction is laminar and rotational symmetric. This makes the data set especially useful for advancement and validation of interface-resolving numerical methods for two-phase flows. In addition to videos of the drop-film interaction, time-resolved experimental and numerical data on three characteristic dimensions of the crown (height, base diameter, top diameter) are provided for two different impact velocities. The experimental results are used to develop an extended surface tension model for the phase field method, which is suitable for highly dynamic two-phase flows. | ||
Revision as of 08:01, 10 August 2023
Axisymmetric drop impact dynamics on a wall film of the same liquid
Abstract
The dynamics of the normal impact of a single drop onto a thin wall film of the same liquid is characterized experimentally (using high-speed shadowgraphy) and by numerical simulations (using a diffuse-interface phase-field method). The initial kinetic energy of the drop is sufficiently high to give rise to the formation of a notable crown (corona) but sufficiently low to avoid any disintegration of the crown. Splashing is thus avoided and the entire dynamics of the drop-film interaction is laminar and rotational symmetric. This makes the data set especially useful for advancement and validation of interface-resolving numerical methods for two-phase flows. In addition to videos of the drop-film interaction, time-resolved experimental and numerical data on three characteristic dimensions of the crown (height, base diameter, top diameter) are provided for two different impact velocities. The experimental results are used to develop an extended surface tension model for the phase field method, which is suitable for highly dynamic two-phase flows.
Contributed by: Milad Bagheri, Bastian Stumpf, Ilia V. Roisman, Cameron Tropea, Jeanette Hussong, Martin Wörner, Holger Marschall — Technical University of Darmstadt and Karlsruhe Institute of Technology
© copyright ERCOFTAC 2024