EXP 1-4 Measurement Data and Results: Difference between revisions
Line 16: | Line 16: | ||
Fig. 7 compares experimental results for the three crown dimensions with numerical results obtained for the two surface tension models and different grid resolution. | Fig. 7 compares experimental results for the three crown dimensions with numerical results obtained for the two surface tension models and different grid resolution for the case with moderate impact energy. | ||
Revision as of 13:04, 4 August 2023
Axisymmetric drop impact dynamics on a wall film of the same liquid
Measurement data/results
Excel files with experimental results for moderate and high impact velocity are available for download through the website https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3295 or via the following doi: https://doi.org/10.48328/tudatalib-722. In addition to the experimental results, the Excel files also include results of numerical simulations with a phase-field method. The content of the Excel files is described below.
In the numerical simulations, two different models for the surface tension force (equilibrium/relaxation) are employed in combination with different spatial resolutions. In the phase field method, the surface tension force is related to the profile of the phase-discriminating order parameter (C) and depends in particular on the gradient of C within the diffuse interface region. In the standard (equilibrium) formulation, C is assumed to follow the tanh profile of the equilibrium state whereas the relaxation model accounts for the deviation of the actual profile of C from the equilibrium profile. The spatial resolution is quantified by the number of mesh cells Nc used to resolve the diffuse interface as illustrated in Fig. 6.
Fig. 7 compares experimental results for the three crown dimensions with numerical results obtained for the two surface tension models and different grid resolution for the case with moderate impact energy.
A more detailed discussion on the experimental and numerical results is given in the following publication:
M. Bagheri, B. Stumpf, I.V. Roisman, C. Tropea, J. Hussong, M. Wörner, H. Marschall, Interfacial relaxation – Crucial for phase-field methods to capture low to high energy drop-film impacts, Int. J. Heat Fluid Flow 94 (2022) 108943, https://doi.org/10.1016/j.ijheatfluidflow.2022.108943
Contributed by: Milad Bagheri, Bastian Stumpf, Ilia V. Roisman, Cameron Tropea, Jeanette Hussong, Martin Wörner, Holger Marschall — Technical University of Darmstadt and Karlsruhe Institute of Technology
© copyright ERCOFTAC 2024