EXP 1-4 Measurement Data and Results: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
Line 12: Line 12:
</pre>
</pre>


Excel files with experimental results for moderate and high impact velocity are available for download through the website https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3295 or via the following doi: https://doi.org/10.48328/tudatalib-722.  
Excel files with experimental results for moderate and high impact velocity are available for download through the website https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3295 or via the following doi: https://doi.org/10.48328/tudatalib-722. Besides the experimental results, the Excel files also include results of numerical simulations with a phase-field method employing different spatial resolutions of the diffuse interface (indicated by ''N''<sub>c</sub>) and modeling of the surface tension force (equilibrium/relaxation), see Figure 4. A detailed discussion on the experimental and numerical results is given in the following publication:
 
The Excel files also include results of numerical simulations with a phase-field method employing different spatial resolutions of the diffuse interface (indicated by ''N''<sub>c</sub>) and modeling of the surface tension force (equilibrium/relaxation), see Figure 4. A detailed discussion on the experimental and numerical results is given in the following publication:


M. Bagheri, B. Stumpf, I.V. Roisman, C. Tropea, J. Hussong, M. Wörner, H. Marschall, Interfacial relaxation – Crucial for phase-field methods to capture low to high energy drop-film impacts, Int. J. Heat Fluid Flow 94 (2022) 108943, https://doi.org/10.1016/j.ijheatfluidflow.2022.108943
M. Bagheri, B. Stumpf, I.V. Roisman, C. Tropea, J. Hussong, M. Wörner, H. Marschall, Interfacial relaxation – Crucial for phase-field methods to capture low to high energy drop-film impacts, Int. J. Heat Fluid Flow 94 (2022) 108943, https://doi.org/10.1016/j.ijheatfluidflow.2022.108943

Revision as of 08:38, 16 June 2023

Axisymmetric drop impact dynamics on a wall film of the same liquid

Front Page

Introduction

Review of experimental studies

Description

Experimental Set Up

Measurement Quantities and Techniques

Data Quality and Accuracy

Measurement Data and Results

Measurement data/results

Provide files of the measurement data together with format information/read-me files. Some graphical presentation of the results should also be given like profiles along characteristic lines or contours in characteristic planes of mean and if possible turbulence quantities, streamlines, etc. and the so presented results should also be discussed briefly.

Excel files with experimental results for moderate and high impact velocity are available for download through the website https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/3295 or via the following doi: https://doi.org/10.48328/tudatalib-722. Besides the experimental results, the Excel files also include results of numerical simulations with a phase-field method employing different spatial resolutions of the diffuse interface (indicated by Nc) and modeling of the surface tension force (equilibrium/relaxation), see Figure 4. A detailed discussion on the experimental and numerical results is given in the following publication:

M. Bagheri, B. Stumpf, I.V. Roisman, C. Tropea, J. Hussong, M. Wörner, H. Marschall, Interfacial relaxation – Crucial for phase-field methods to capture low to high energy drop-film impacts, Int. J. Heat Fluid Flow 94 (2022) 108943, https://doi.org/10.1016/j.ijheatfluidflow.2022.108943


Fig. 4: Comparison of the crown base diameter, rim diameter and height with the experiment - moderate energy impact.





Contributed by: Milad Bagheri, Bastian Stumpf, Ilia V. Roisman, Cameron Tropea, Jeanette Hussong, Martin Wörner, Holger Marschall — Technical University of Darmstadt and Karlsruhe Institute of Technology

Front Page

Introduction

Review of experimental studies

Description

Experimental Set Up

Measurement Quantities and Techniques

Data Quality and Accuracy

Measurement Data and Results


© copyright ERCOFTAC 2024