Description AC7-04: Difference between revisions

From KBwiki
Jump to navigation Jump to search
Line 10: Line 10:


The objective of the current Application Challenge is to provide a well-controlled environment and procedure to enable comparison between CFD and 4D Flow MRI. The experiment is designed to remove most classical sources of uncertainties inherent to the in vivo MRI such as moving deformable walls or undefined blood properties. The experimental MRI setup is shown on figure 1, where the phantom presents topological complexities analogous to the cardiovascular system (Fig. 2). Large Eddy Simulation (LES) has been conducted on the same geometry. Both the experiment and the simulation have been performed under a sinusoidal pulsatile flow, with flow conditions in the laminar-turbulent transition regime similar to what one can found in the cardiovascular system.
The objective of the current Application Challenge is to provide a well-controlled environment and procedure to enable comparison between CFD and 4D Flow MRI. The experiment is designed to remove most classical sources of uncertainties inherent to the in vivo MRI such as moving deformable walls or undefined blood properties. The experimental MRI setup is shown on figure 1, where the phantom presents topological complexities analogous to the cardiovascular system (Fig. 2). Large Eddy Simulation (LES) has been conducted on the same geometry. Both the experiment and the simulation have been performed under a sinusoidal pulsatile flow, with flow conditions in the laminar-turbulent transition regime similar to what one can found in the cardiovascular system.
[[File:AC7-04_ExpSetup.png|600px|center]]
<div style="text-align: center;">
'''Figure 1:''' Schematic experimental setup
</div>


The methods described in this Application Challenge are mainly adopted from Puiseux
The methods described in this Application Challenge are mainly adopted from Puiseux

Revision as of 08:45, 26 July 2021

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice

A pulsatile 3D flow relevant to thoracic hemodynamics: CFD - 4D MRI comparison

Application Challenge AC7-04   © copyright ERCOFTAC 2021

Description

Introduction

The objective of the current Application Challenge is to provide a well-controlled environment and procedure to enable comparison between CFD and 4D Flow MRI. The experiment is designed to remove most classical sources of uncertainties inherent to the in vivo MRI such as moving deformable walls or undefined blood properties. The experimental MRI setup is shown on figure 1, where the phantom presents topological complexities analogous to the cardiovascular system (Fig. 2). Large Eddy Simulation (LES) has been conducted on the same geometry. Both the experiment and the simulation have been performed under a sinusoidal pulsatile flow, with flow conditions in the laminar-turbulent transition regime similar to what one can found in the cardiovascular system.

AC7-04 ExpSetup.png

Figure 1: Schematic experimental setup

The methods described in this Application Challenge are mainly adopted from Puiseux et al. (2019) [2].

Relevance to Industrial Sector

Design or Assessment Parameters

Flow Domain Geometry

Flow Physics and Fluid Dynamics Data




Contributed by: Morgane Garreau — University of Montpellier, France

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice

© copyright ERCOFTAC 2021