UFR 4-06 References: Difference between revisions
David.Fowler (talk | contribs) |
m (UFR 4-06 References moved to Silver:UFR 4-06 References) |
(No difference)
|
Revision as of 13:25, 7 April 2009
Swirling diffuser flow
Underlying Flow Regime 4-06 © copyright ERCOFTAC 2004
References
[1] Dixon, S.L. Fluid Mechanics and Thermodynamics of Turbomachinery 4th Edition. Butterworth and Heinemann. ISBN 0-7506-7059-2. (1998).
[2] Massey, B. Mechanics of Fluids 7th Edition. Stanley Thornes. ISBN 0-7487-4043-0. (1998).
[3] Y. Senoo, N. Kawaguchi and T. Nagata. Swirl flow in conical diffusers. Bull. JSME, 21, 112-119 (1978)
[4] Armfield, S.W, Cho, N-H and Fletcher, C.A.J. Prediction of Turbulence Quantities for Swirling Flow in Conical Diffusers. AIAA Journal, Vol 2, No3 (1990)
[5] Okhio, C.B. Horton, H.P. and Langer, G. The Calculation of Turbulent Swirling Flow through Wide Angle Conical Diffusers and the associated Dissipative Losses. International Journal of Heat and Fluid Flow, Vol 7, No1, pp 37-48, (1986).
[6] Armfield, S.W and Fletcher, C. A. J. Numerical Simulation of Swirling Flow in Diffusers. International Journal For Numerical Methods in Fluids. Vol 6, pp541-556 (1986)
[7] Habib, M.A and Whitelaw, J.H. The Calculation of Turbulent Flow in Wide Angle Diffusers. Numerical Heat Transfer, Vol 5, No2, pp145-164, (1982)
[8] Hah, C. Calculation of Various Diffuser Flows with Inlet Swirl and Inlet Distortion Effect. AIAA Journal, Vol 21 pp1127-1133, (1983)
[9] Page, M., Masse, B and Giroux, A-M. Turbulent Swirling Flow Computation in a Conical Diffuser. Fluent/Fidap Users Group Meeting, Vermont, USA (1997)
[10] Clausen, P.D, Koh, S.G and Wood, D.H. Measurements of a swirling turbulent boundary layer developing in a conical diffuser. Experimental Thermal and Fluid Science, Vol 6, pp39-48, (1993)
[11] Rodi, W. Bonnin, J.C, Buchal, T and Laurence D. Testing of Calculation Methods for Turbulent Flows: Workshop Results for 5 Test Cases. ISSN 1161-0611. EDF (1998)
[12] Rodi, W. Bonnin, J-C and Buchal. T. Proc. ERCOFTAC Workshop on Data Bases and Testing of Calculation Methods for Turbulent Flows. University of Karlsruhe, Institute for Hydromechanics. April 3-7, 1995.
[13] Cho, N-H and Fletcher, C. A. J. Computation of Turbulent Conical Diffuser Flows Using a Non-Orthogonal Grid System. Computers and Fluids, Vol 19, No ¾ pp 347-361, 1991.
[14] Rodi, W. A New Algebraic Relation for Calculating Reynolds Stresses. Z. Agnew. Math Mech, 56, 219. (1976)
[15] Chieng, C.C. and Launder, B.E. On the Calculation of Turbulent Heat Transport Downstream from an Abrupt Pipe Expansion. Numerical Heat Transfer, Vol 3, No2, pp 189-207, (1980).
[16] Versteeg, H. K and Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman. ISBN0-582-21884-5. 1995
[17] S. W Armfield and C. A. J. Fletcher. Comparison of k-ε and Algebraic Reynolds Stress Models for Swirling Diffuser Flow. International Journal for Numerical Methods in Fluids. Vol 9, 987-1009 (1989).
© copyright ERCOFTAC 2004
Contributors: Chris Carey - Fluent Europe Ltd