UFR 4-11 References: Difference between revisions
David.Fowler (talk | contribs) m (→References) |
|||
Line 61: | Line 61: | ||
[http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-08.gif fig2-08.gif] Effect of mesh refinement on the solution - axial velocity profile | [http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-08.gif fig2-08.gif] Effect of mesh refinement on the solution - axial velocity profile | ||
[[Media:UFR4-11_Fig2-09a.gif|Fig2-09a.gif]] Solution error estimates for velocity magnitude on the | |||
axial symmetry plane for RUN02. | |||
[[Media:UFR4-11_Fig2-09b.gif|Fig2-09b.gif]] Solution error estimates for velocity magnitude on the | |||
axial symmetry plane for RUN03. | |||
<!-- | |||
[http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-09.jpg fig2-09.jpg] Solution error estimates for velocity magnitude on the axial symmetry plane | [http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-09.jpg fig2-09.jpg] Solution error estimates for velocity magnitude on the axial symmetry plane | ||
--> | |||
[http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-10.jpg fig2-10.jpg] Comparison of velocity magnitude contours, 3ach | [http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-10.jpg fig2-10.jpg] Comparison of velocity magnitude contours, 3ach — two-layer simulation | ||
[http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-11.gif fig2-11.gif] Comparison of velocity decay (U/U<sub>inlet</sub>) | [http://qnetkb.cfms.org.uk/UFR4/UFR4-11/I/fig2-11.gif fig2-11.gif] Comparison of velocity decay (U/U<sub>inlet</sub>) — two-layer simulation | ||
<font size="-2" color="#888888">© copyright ERCOFTAC 2004</font><br /> | <font size="-2" color="#888888">© copyright ERCOFTAC 2004</font><br /> | ||
Line 71: | Line 79: | ||
Contributors: Steve Gilham; | Contributors: Steve Gilham; Athena Scaperdas - Atkins | ||
Revision as of 14:24, 3 April 2009
Simple room flow
Underlying Flow Regime 4-11 © copyright ERCOFTAC 2004
References
Boyson, H.F., 1993. 'Renormalization group theory based turbulence models and their applications to industrial problems'. IMechE European Conf. on Engineering Applications of CFD, London, 7-8 September.
Britter, R.E., 1993. 'The evaluation of technical models used for major accident hazard installations'. CEC research report EUR 14774 EN.
Computational Dynamics, 1999. STAR-CD User Manual Methodology.
Chen Q. and Moser A. 1991, Simulation of a multiple-nozzle diffuser, In Proceedings of the 12th AIVC Conference, 'Air Movement and Ventilation Control within Buildings, Ottawa, Canada, Document No. AIC-PROC-12-1991-1.
Ewert M., Renz U., Vogel, N., Zeller M. 1991, Definition of the Flow Parameters at the Room Air Flow Simulation. In Proceedings of the 12th AIVC Conference, 'Air Movement and Ventilation Control within Buildings, Ottawa, Canada, Document No. AIC-PROC-12-1991-1.
Fontaine, J.R., Biolley, F., Rapp, R., & Serieys, J.C. 1991 'Ventilation flow analysis - flow visualisation and LDA measurements in water scale models, validation of numerical results'. In Proceedings of the 12th AIVC Conference, 'Air Movement and Ventilation Control within Buildings, Ottawa, Canada, Document No. AIC-PROC-12-1991-1.
Gilham, S., Ferguson S., Deaves, D.M. (1995) Dispersion of releases of Hazardous materials within buildings, Phase II CFD modelling, WS Atkins Safety & Reliability Report (WSA/ RSU 8000/M5012/R01)
Heikkinen J., 1991 'Modelling of supply air terminals for room air flow simulation'. In Proceedings of the 12th AIVC Conference, Air Movement and Ventilation Control within Buildings', Ottawa, Canada, Document No. AIC-PROC-12-1991-1.
Heikkinen J., 1991b Measurements of test cases B2, B3, E2 and E3 (isothermal and summer cooling cases) IEA Annex 20, Research Item 1.16 and 1.17, Technical Report, Technical Research Centre, Espoo, Finland.
Lemaire, A.D., (Ed.) 1992. 'Room air and contaminant flow', Evaluation of Computational Methods, Subtask-1 Summary Report, IEA Annex 20.
Liddament M.W. 1991 A review of building air flow simulation, Technical Note AIVC 33, Annex 5, Document AIC-TN-33-1991, ISBN 0 946975 52 2.
Roache, P.J., 1994. 'Perspective: A method for uniform reporting of grid refinement studies'. J. Fluid Eng. Vol.116 pp. 405-413.
Skovgaard M., Nielsen, P. Modelling Complex inlet Geometries in CFD-applied to air flow in Ventilated Rooms. In Proceedings of the 12th AIVC Conference, Air Movement and Ventilation Control within Buildings', Ottawa, Canada, Document No. AIC-PROC-12-1991‑1.
LIST OF FIGURES
fig2-01.gif Illustration of the room geometry
fig2-02.gif Illustration of the CFD mesh used (Run 03)
fig2-02vect.jpg CFD simulation - velocity vectors
fig2-03.jpg Comparison of velocity magnitude contours, 3ach
fig2-05-ve.jpg Comparison of mean velocities, 3ach
fig2-05-te.jpg Comparison of turbulence velocities, 3ach
fig2-06.gif Comparison of velocity decay (U/Uinlet) of the wall jet along the ceiling
fig2-07.jpg Comparison of mean velocities, 1.5ach
fig2-08.gif Effect of mesh refinement on the solution - axial velocity profile
Fig2-09a.gif Solution error estimates for velocity magnitude on the axial symmetry plane for RUN02.
Fig2-09b.gif Solution error estimates for velocity magnitude on the axial symmetry plane for RUN03.
fig2-10.jpg Comparison of velocity magnitude contours, 3ach — two-layer simulation
fig2-11.gif Comparison of velocity decay (U/Uinlet) — two-layer simulation
© copyright ERCOFTAC 2004
Contributors: Steve Gilham; Athena Scaperdas - Atkins