UFR 3-05 References: Difference between revisions
Line 24: | Line 24: | ||
5. W. Haase, F. Brandsma, E. Elsholz, M. Leschziner and D. Schwamborn (Eds), “EUROVAL — An European Initiative on Validation of CFD Codes”, Notes on Numerical Fluid Mechanics, Vol. 42, 1992. | 5. W. Haase, F. Brandsma, E. Elsholz, M. Leschziner and D. Schwamborn (Eds), “EUROVAL — An European Initiative on Validation of CFD Codes”, Notes on Numerical Fluid Mechanics, Vol. 42, 1992. | ||
6. T. Pot, J. Delery and C.Quelin, | 6. T. Pot, J. Delery and C.Quelin, “Interaction choc-couche limite dans un canal transonique tridemensionnel — nouvells experiences en vue de la validation du code canai.” Technical Report 92/7078 Ay, ONERA, Fevrier 1991 | ||
7. W.D. Bachalo and D.A. Johnson, | 7. W.D. Bachalo and D.A. Johnson, “Transonic turbulent boundary layer separation generated on an axi-symmetric flow model”, AIAA Journal, Vol. 24, p. 437, 1986. | ||
8. R.G.M. Hassan and J.J. McGuirk, | 8. R.G.M. Hassan and J.J. McGuirk, “Assessment of turbulence transport models for transonic flow over an axi-symmetric bump”, The Aeronautical Journal, Paper No. 2562, January 2001. | ||
9. B.E. Launder and B.I. Sharma, | 9. B.E. Launder and B.I. Sharma, “Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc”, Letters in Hear and Mass Transfer, 1974, Vol 1 pp 131-138. | ||
10. D.C. Wilcox, | 10. D.C. Wilcox, “Reassessment of the scale determining equation for advanced turbulence models”, AIAA J. 1988, Vol 26, pp1299-1310. | ||
11. F.R. Menter, | 11. F.R. Menter, “Two-equation eddy viscosity turbulence models for engineering applications”, AIAA Journal, Vol 32, pp1598-1605, 1994. | ||
12. C.G Speziale | 12. C.G Speziale “On non-linear k-l and k-ε models of turbulence”, J. Fluid Mech, Vol 178, pp 459-475, 1997. | ||
13. K. Suga Development and Application of a Non-linear Eddy-Viscosity Model Sensitised to Stress and Strain Invariants. PhD Thesis, UMIST, 1995. | 13. K. Suga Development and Application of a Non-linear Eddy-Viscosity Model Sensitised to Stress and Strain Invariants. PhD Thesis, UMIST, 1995. |
Revision as of 14:51, 31 March 2009
Shock/boundary-layer interaction (on airplanes)
Underlying Flow Regime 3-05 © copyright ERCOFTAC 2004
References
1. P. Batten, H. Loyau and M. Leschziner (eds.), “Workshop on shock-boundary-layer interaction”, UMIST, 25th-26th March 1997, UMIST report.
2. M.O. Bristeau, R. Glowinski, J. Periaux and H. Viviand (Eds), “Numerical Simulation of Compressible Navier-Stokes Flows”, In Proceedings of the 1985 GAMM Workshop, Notes on Numerical Fluid Mechanics, Vol. 18, 1985.
3. S.A. Skebe, I. Greber and W.R. Hingst, “Investigation of Two-Dimensional Shock-Wave/Boundary-Layer Interactions”, AIAA, 25(6), 1987.
4. J.M. Delery, “Investigation of strong shock-boundary layer interaction in 2-D transonic flows with emphasis on turbulence phenomena”, AIAA-81-1245.
5. W. Haase, F. Brandsma, E. Elsholz, M. Leschziner and D. Schwamborn (Eds), “EUROVAL — An European Initiative on Validation of CFD Codes”, Notes on Numerical Fluid Mechanics, Vol. 42, 1992.
6. T. Pot, J. Delery and C.Quelin, “Interaction choc-couche limite dans un canal transonique tridemensionnel — nouvells experiences en vue de la validation du code canai.” Technical Report 92/7078 Ay, ONERA, Fevrier 1991
7. W.D. Bachalo and D.A. Johnson, “Transonic turbulent boundary layer separation generated on an axi-symmetric flow model”, AIAA Journal, Vol. 24, p. 437, 1986.
8. R.G.M. Hassan and J.J. McGuirk, “Assessment of turbulence transport models for transonic flow over an axi-symmetric bump”, The Aeronautical Journal, Paper No. 2562, January 2001.
9. B.E. Launder and B.I. Sharma, “Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc”, Letters in Hear and Mass Transfer, 1974, Vol 1 pp 131-138.
10. D.C. Wilcox, “Reassessment of the scale determining equation for advanced turbulence models”, AIAA J. 1988, Vol 26, pp1299-1310.
11. F.R. Menter, “Two-equation eddy viscosity turbulence models for engineering applications”, AIAA Journal, Vol 32, pp1598-1605, 1994.
12. C.G Speziale “On non-linear k-l and k-ε models of turbulence”, J. Fluid Mech, Vol 178, pp 459-475, 1997.
13. K. Suga Development and Application of a Non-linear Eddy-Viscosity Model Sensitised to Stress and Strain Invariants. PhD Thesis, UMIST, 1995.
14. D.D. Apsley and M.A. Leschziner, A new low-Re non-linear two-equation turbulence model, Int. J. Heat and Fluid Flow, Vol 18, pp 15-28, 1997.
15. M.M Gibson and B.E. Launder, Ground effects on pressure fluctuations in the atmospheric boundary layer, J. Fluid Mech., Vol 86, pp 491-511, 1978.
16. K. Hanjalic and S. Jakirlic and I. Hadzic Expanding the limits of equilibrium second-moment turbulence closures, Fluid Dynamics Research, Vol 20, pp 25-41, 1997.
17. D.C. Wilcox, Multiscale model for turbulent flows, AIAA Journal, Vol 26, pp 1311-1320, 1988.
18. P.R. Spalart and S.R. Allmaras A One-Equation Turbulence Model for Aerodynamic Flows , AIAA-92-0439.
19. P.A. Durbin Near-Wall Turbulence Closure Modelling Without Damping Functions , Theoretical and Computational Fluid Dynamics, Vol. 3, pp 1-13, 1991.
© copyright ERCOFTAC 2004
Contributors: Antony Hutton - QinetiQ