EXP 1-4: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
 
(38 intermediate revisions by 2 users not shown)
Line 1: Line 1:


=Axisymmetric drop impact dynamics on a wall film of the same liquid=
=Axisymmetric drop impact dynamics on a wall film of the same liquid=
{{EXPHeaderLib
{{EXPHeader
|area=1
|area=1
|number=4
|number=4
Line 7: Line 7:
__NOTOC__
__NOTOC__
= Abstract =
= Abstract =
<pre style="color: red">
Provide a summary of the test-case submission here.
</pre>


High quality time-resolved experimental data are provided for the normal impact of a single drop onto a thin wall film consisting of the same liquid. The initial kinetic energy of the drop is chosen to meet two requirement. First, it is sufficiently high to give rise to the formation of a notable crown. Second, it is sufficiently low to avoid disintegration of the rim of the crown (splashing). Under these conditions, the entire dynamics of the droplet-wall film interaction is rationally symmetric which makes the experimental data especially useful for advancement and validation of interface-resolving numerical methods for two-phase flows.
The dynamics of the normal impact of a single drop onto a thin wall film of the same liquid is characterized experimentally (using high-speed shadowgraphy) and by numerical simulations (using a diffuse-interface phase-field method). The initial kinetic energy of the drop is sufficiently high to give rise to the formation of a notable crown (corona) but sufficiently low to avoid any disintegration of the crown. Splashing is thus avoided and the entire dynamics of the drop-film interaction is laminar and rotational symmetric. This makes the data set especially useful for advancement and validation of interface-resolving numerical methods for two-phase flows. In addition to videos of the drop-film interaction, time-resolved experimental and numerical data on three characteristic dimensions of the crown (height, base diameter, top diameter) are provided for two different impact velocities. The experimental results are used to develop an extended surface tension model for the phase-field method, which is suitable for highly dynamic two-phase flows. 
 
 
[[File:TRR150-Fig-Comp.png|850px|thumb|center|Fig. 1: Comparison of crown shape (left image) and crown height (right image) between experiment and simulation for moderate impact velocity.]]


<br/>
<br/>
----
----
{{ACContribs
{{ACContribs
|authors=Bastian Stumpf, Milad Bagheri, Ilia V. Roisman, Cameron Tropea, Jeanette Hussong, Martin Wörner, Holger Marschall
|authors=Milad Bagheri, Bastian Stumpf, Ilia V. Roisman, Cameron Tropea, Jeanette Hussong, Martin Wörner, Holger Marschall
|organisation=Technical University of Darmstadt and Karlsruhe Institute of Technology
|organisation=Technical University of Darmstadt and Karlsruhe Institute of Technology
}}
}}
{{EXPHeaderLib
{{EXPHeader
|area=1
|area=1
|number=4
|number=4

Latest revision as of 10:00, 17 August 2023

Axisymmetric drop impact dynamics on a wall film of the same liquid

Front Page

Introduction

Review of experimental studies

Description

Experimental Set Up

Measurement Quantities and Techniques

Data Quality and Accuracy

Measurement Data and Results

Abstract

The dynamics of the normal impact of a single drop onto a thin wall film of the same liquid is characterized experimentally (using high-speed shadowgraphy) and by numerical simulations (using a diffuse-interface phase-field method). The initial kinetic energy of the drop is sufficiently high to give rise to the formation of a notable crown (corona) but sufficiently low to avoid any disintegration of the crown. Splashing is thus avoided and the entire dynamics of the drop-film interaction is laminar and rotational symmetric. This makes the data set especially useful for advancement and validation of interface-resolving numerical methods for two-phase flows. In addition to videos of the drop-film interaction, time-resolved experimental and numerical data on three characteristic dimensions of the crown (height, base diameter, top diameter) are provided for two different impact velocities. The experimental results are used to develop an extended surface tension model for the phase-field method, which is suitable for highly dynamic two-phase flows.


Fig. 1: Comparison of crown shape (left image) and crown height (right image) between experiment and simulation for moderate impact velocity.




Contributed by: Milad Bagheri, Bastian Stumpf, Ilia V. Roisman, Cameron Tropea, Jeanette Hussong, Martin Wörner, Holger Marschall — Technical University of Darmstadt and Karlsruhe Institute of Technology

Front Page

Introduction

Review of experimental studies

Description

Experimental Set Up

Measurement Quantities and Techniques

Data Quality and Accuracy

Measurement Data and Results


© copyright ERCOFTAC 2024