Semi-confined Flows: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 68: Line 68:
| [[UFR_3-34|Smooth wall separation and reattachment at high Reynolds numbers]]||E. Guseva, M. Strelets
| [[UFR_3-34|Smooth wall separation and reattachment at high Reynolds numbers]]||E. Guseva, M. Strelets
| Peter the Great St Petersburg Polytechnic University
| Peter the Great St Petersburg Polytechnic University
|}
|
-
|- style="background-color:LightGrey;"
!3-35
| [[UFR_3-35|Cylinder-wall junction flow]]|| Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart
| Technical University Munich
|
-
|- style="background-color:LightGrey;"
!3-36
| [[UFR_3-36|HiFi-TURB-DLR rounded step]]|| Erij Alaya, Cornelia Grabe
| Deutsches Luft-und Raumfahrt Zentrum (DLR)
|
}
<!-- Not tested
<!-- Not tested
{{#ask:  
{{#ask:  

Latest revision as of 16:00, 17 February 2023

UFR Underlying Flow Regime Contributor Organisation
3-01 Boundary layer interacting with wakes under adverse pressure gradient - NLR 7301 high lift configuration Jan Vos CFS Engineering SA
3-03 2D Boundary layers with pressure gradients (A) Florian Menter AEA Technology
3-04 Laminar-turbulent boundary layer transition Andrzej Boguslawski Technical University of Czestochowa
3-05 Shock/boundary-layer interaction (on airplanes) Anthony Hutton Qinetiq
3-06 Natural and mixed convection boundary layers on vertical heated walls (A) André Latrobe CEA / DRN / Department de Thermohydraulique
3-07 Natural and mixed convection boundary layers on vertical heated walls (B) Mike Rabbitt British Energy
3-08 3D boundary layers under various pressure gradients, including severe adverse pressure gradient causing separation Pietro Catalano CIRA
3-09 Impinging jet Jean-Paul Bonnet, Remi Manceau Université de Poitiers
3-10 The plane wall jet Jan Eriksson, Rolf Karlsson Vattenfall Utveckling AB
3-11 Pipe expansion (with heat transfer) Jeremy Noyce Magnox Electric
3-12 Stagnation point flow Beat Ribi MAN Turbomaschinen AG Schweiz
3-13 Flow over an isolated hill (without dispersion) Frederic Archambeau EDF - R&D Division
3-14 Flow over surface-mounted cube/rectangular obstacles Ian Castro University of Southampton
3-15 2D flow over backward facing step Arnau Duran CIMNE
3-18 2D Boundary layers with pressure gradients (B) Fred Mendonca Computational Dynamics Ltd
3-30 2D Periodic Hill Flow Christoph Rapp, Michael Breuer, Michael Manhart, Nikolaus Peller Technische Universität München, Helmut-Schmidt Universität Hamburg
3-31 Flow over curved backward-facing step Sylvain Lardeau CD-adapco, London, UK
3-32 Planar shock-wave boundary-layer interaction Jean-Paul Dussauge, P. Dupont, N. Sandham, E. Garnier Aix-Marseille Université and Centre National de la Recherche Scientifique UM 7343, University of Southampton, ONERA/DAAP
3-33 Turbulent flow past a wall-mounted hemisphere Jens Nikolas Wood, Guillaume De Nayer, Stephan Schmidt, Michael Breuer Helmut-Schmidt Universität Hamburg
3-34 Smooth wall separation and reattachment at high Reynolds numbers E. Guseva, M. Strelets Peter the Great St Petersburg Polytechnic University

-

3-35 Cylinder-wall junction flow Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart Technical University Munich

-

3-36 HiFi-TURB-DLR rounded step Erij Alaya, Cornelia Grabe Deutsches Luft-und Raumfahrt Zentrum (DLR)

}