UFR 3-35 References: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 14: | Line 14: | ||
* Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technische Universität München, München. | * Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technische Universität München, München. | ||
* Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. ''Physics of Fluids'' 27(7). | * Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. ''Physics of Fluids'' 27(7). | ||
* Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. ''Physics of Fluids'' (19):045107. | * Manhart, M. (2004) A zonal grid algorithm for DNS of turbulent boundary layers. ''Computers and Fluids'' 33(3):435–461. | ||
* Nicoud, F. & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tensor. ''Flow, Turbulence and Combustion'' 62(3):183–200. | |||
* Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. ''Physics of Fluids'' (19):045107. | |||
* Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. PhD thesis, Technische Universität München, München. | |||
* Peller, N., Duc, A. L., Tremblay, F. & Manhart, M. (2006) High-order stable interpolations for immersed boundary methods. ''International Journal of Numerical Methods in Fluids'' 52:1175–1193. | |||
* Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technische Universität München, München. | * Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technische Universität München, München. | ||
* Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. ( | * Schanderl, W., Jenssen, U., and Manhart, M. (2017a). Near-wall stress balance in front of a wall-mounted cylinder. ''Flow, Turbulence and Combustion'' 99(3-4):665–684. | ||
* Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017b). The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. ''Journal of Fluid Mechanics'' 827:285-321. | |||
* Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. ''Computers and Fluids'' 128:16-29. | * Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. ''Computers and Fluids'' 128:16-29. | ||
* Schanderl, W. and Manhart, M. (2018). Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow. ''Flow, Turbulence and Combustion'' 101(2):499–519. | |||
|} | |} | ||
Revision as of 18:17, 8 September 2019
Cylinder-wall junction flow
Underlying Flow Regime 3-35
References
- Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015). Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. Journal of Fluid Mechanics 776:475-511.
- Dargahi, B. (1989). The turbulent flow field around a circular cylinder. Experiments in Fluids 8(1-2):1-12.
- Devenport, W. J. and Simpson, R. L. (1990). Timedependent and time-averaged turbulence structure near the nose of a wing-body junction. Journal of Fluid Mechanics 210:23-55.
- Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. Flow, Turbulence and Combustion 86(2):231-262.
- Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technische Universität München, München.
- Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Physics of Fluids 27(7).
- Manhart, M. (2004) A zonal grid algorithm for DNS of turbulent boundary layers. Computers and Fluids 33(3):435–461.
- Nicoud, F. & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62(3):183–200.
- Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids (19):045107.
- Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. PhD thesis, Technische Universität München, München.
- Peller, N., Duc, A. L., Tremblay, F. & Manhart, M. (2006) High-order stable interpolations for immersed boundary methods. International Journal of Numerical Methods in Fluids 52:1175–1193.
- Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technische Universität München, München.
- Schanderl, W., Jenssen, U., and Manhart, M. (2017a). Near-wall stress balance in front of a wall-mounted cylinder. Flow, Turbulence and Combustion 99(3-4):665–684.
- Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017b). The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. Journal of Fluid Mechanics 827:285-321.
- Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. Computers and Fluids 128:16-29.
- Schanderl, W. and Manhart, M. (2018). Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow. Flow, Turbulence and Combustion 101(2):499–519.
Contributed by: Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart — Technical University Munich
© copyright ERCOFTAC 2019