Description AC2-12: Difference between revisions

From KBwiki
Jump to navigation Jump to search
Line 8: Line 8:
=Description=
=Description=
==Introduction==
==Introduction==
Turbulent separated bluff-body flows are encountered in many industrial applications, such as external aerodynamics and  gas turbine combustors. This type of flow is associated with separation of the boundary layers, vortex shedding and bluff-body stabilized combustion and has long been of interest to scientists and engineers. The goal of the study on which this AC is based has been to replicate experiments carried out in a test rig at Volvo [1,2,3]. Due to the simple geometry, this test case is quite attractive for verifying and validating new algorithms and models in the frame of computational  fluid dynamics (hereafter CFD).  The knowledge obtained can be applied to assess the predictive capabilities of the state-of-the-art CFD codes to model and simulate unsteady combustion physics.  The numerical results reported here are based on the work published in [4].
<br/>
<br/>
----
----

Revision as of 13:08, 2 April 2019

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice

Turbulent separated inert and reactive flows over a triangular bluff body

Application Challenge AC2-12   © copyright ERCOFTAC 2019

Description

Introduction

Turbulent separated bluff-body flows are encountered in many industrial applications, such as external aerodynamics and gas turbine combustors. This type of flow is associated with separation of the boundary layers, vortex shedding and bluff-body stabilized combustion and has long been of interest to scientists and engineers. The goal of the study on which this AC is based has been to replicate experiments carried out in a test rig at Volvo [1,2,3]. Due to the simple geometry, this test case is quite attractive for verifying and validating new algorithms and models in the frame of computational fluid dynamics (hereafter CFD). The knowledge obtained can be applied to assess the predictive capabilities of the state-of-the-art CFD codes to model and simulate unsteady combustion physics. The numerical results reported here are based on the work published in [4].



Contributed by: D.A. Lysenko and M. Donskov — 3DMSimtek AS, Sandnes, Norway

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice


© copyright ERCOFTAC 2019