UFR 4-02 References: Difference between revisions
David.Fowler (talk | contribs) (New page: {{UFR|front=UFR 4-02|description=UFR 4-02 Description|references=UFR 4-02 References|testcase=UFR 4-02 Test Case|evaluation=UFR 4-02 Evaluation|qualityreview=UFR 4-02 Quality Review|bestp...) |
m (Dave.Ellacott moved page Silver:UFR 4-02 References to UFR 4-02 References over redirect) |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{UFR|front=UFR 4-02|description=UFR 4-02 Description|references=UFR 4-02 References|testcase=UFR 4-02 Test Case|evaluation=UFR 4-02 Evaluation|qualityreview=UFR 4-02 Quality Review|bestpractice=UFR 4-02 Best Practice Advice|relatedACs=UFR 4-02 Related ACs}} | {{UFR|front=UFR 4-02|description=UFR 4-02 Description|references=UFR 4-02 References|testcase=UFR 4-02 Test Case|evaluation=UFR 4-02 Evaluation|qualityreview=UFR 4-02 Quality Review|bestpractice=UFR 4-02 Best Practice Advice|relatedACs=UFR 4-02 Related ACs}} | ||
Line 15: | Line 14: | ||
== References == | == References == | ||
[1] | [1] Y. Lei, J. Zhang,L. Zhou: Simulation of swirling turbulent flows of coaxial jets in a combustor, Numerical Heat Transfer, Part A. vol.37, pp.189-199, 2000 | ||
[2] | [2] R.P. Lans et al.: Residence time distributions in a cold, confined swirl flow. Implications for chemical engineering combustion modelling, Chemical Engineering Science vol. 52, 1997 | ||
[3] | [3] L. Zaichik et al.: Modeling of dynamics, heat transfer and combustion in two-phase turbulent flows: 1. Isothermal flow, Experimental Thermal and Fluid Science, 1997 | ||
[4A] L.X. Zhou et al.: Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer, Powder Technology vol.112, 2000 | [4A] L.X. Zhou et al.: Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer, Powder Technology vol.112, 2000 | ||
Line 27: | Line 26: | ||
[4B] L.X. Zhou et al.: Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model, Powder Technology vol.116, 2001 | [4B] L.X. Zhou et al.: Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model, Powder Technology vol.116, 2001 | ||
[5] | [5] M.A.R. Sharif, Y.K.E. Wong: Evaluation of the performance of three turbulence closure models in the prediction of confined swirling flows, Computers & Fluids vol. 24, 1995 | ||
[6] | [6] W. Meier et al.: Investigations in the TECFLAM swirling diffusion flame: Laser Raman measurements and CFD calculations, Applied Physics B vol.71, 2000 | ||
[7] | [7] R.M. So, S.A. Ahmed, H.C. Mongia: An experimental investigation of gas jets in confined swirling air flow, NAS CR-3832, 1984 | ||
[8] | [8] B.T. Vu, F.C. Gouldin: Flow measurements in a model swirl combustor, AIAA J. vol.20, 1982 | ||
[9] | [9] M. Sommerfeld, H.H. Qiu: Detailed measurement of a swirling particulate two-phase flow by a phase Doppler anemometer, Int. J. Heat and Fluid Flow vol.12, 1991 | ||
<span lang="PL">[10]<span style="font: 7.0pt "Times New Roman""> | <span lang="PL">[10]<span style="font: 7.0pt "Times New Roman""> </span></span>TECFLAM web page, <!--[http://www.tu-darmstadt.de/fb/mb/ekt/tecflam www.tu-darmstadt.de/fb/mb/ekt/tecflam]-->[http://www.dlr.de/vt/desktopdefault.aspx/tabid-3067/4635_read-6730/ http://www.dlr.de/vt/desktopdefault.aspx/tabid-3067/4635_read-6730/] (old link is broken) | ||
[11] | [11] S. Hogg, M.A. Leschziner: Computation of highly swirling confined flow with a Reynolds stress turbulence model, AIAA J. vol.27, 1989 | ||
[12] | [12] J. Schlüter, T. Schönfeld, T. Poinsot: Characterization of confined swirl flows using large eddy simulations, submitted for ASME Turbo Expo 2001 | ||
<span lang="DE">[13]<span style="font: 7.0pt "Times New Roman""> | <span lang="DE">[13]<span style="font: 7.0pt "Times New Roman""> </span></span>T. Egly:Experimentelle untersuchung der nicht-reagierenden stromung des siemens V64.3A-brenners, studienarbeit, University of Karlsruhe(TH), Nr 394, December 1999 | ||
[14] | [14] J. Zhang, S. Nieh, L. Zhou: A new version of algebraic stress model for simulating strongly swirling turbulent flows, Numerical Heat Transfer, Part B: Fundamentals, vol.22, 1992 | ||
[15] | [15] D.G. Sloan, P.J. Smith, L.D. Smoot: Modeling of swirl in turbulent flow system, Prog. Energy & Comb. Science vol.12, 1986 | ||
[16] | [16] F. Ducros, F. Nicoud, T. Schönfeld: Large eddy simulation of compressible flows on hybrid meshes, In 11<sup>th</sup> Symposion on Turbulent Shear Flows, vol.3, 1997 | ||
[17] | [17] W. Krebs, G. Walz, S. Hoffmann, N. Syred: Detailed thermal analysis of annular combustors, ASME, (99-GT-45), 1999 | ||
[18] | [18] Roback R., Johnson B.V.: Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983 | ||
[19] | [19] Pierce C.D., Moin P.: LES of a confined coaxial jet with swirl and heat release, AIAA paper 98-2892, 1998 | ||
[20] | [20] Sommerfeld M., Ando A., Wennerberg D.: Swirling, particle-laden flows through a pipe expansion, Journal of Fluids Engineering, vol. 114, 1992 | ||
[21] | [21] Srinivasan R., Mongia H.C.: Numerical computations of swirling recirculating flow, Nasa CR-165197, 1980 | ||
[22] | [22] Sturgess G.J.: Aerothermal modeling program – phase I, NASA CR-168202, 1983 | ||
[23] | [23] Zalesak S.T.: Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol. 31, 1979 | ||
Line 77: | Line 76: | ||
{{UFR|front=UFR 4-02|description=UFR 4-02 Description|references=UFR 4-02 References|testcase=UFR 4-02 Test Case|evaluation=UFR 4-02 Evaluation|qualityreview=UFR 4-02 Quality Review|bestpractice=UFR 4-02 Best Practice Advice|relatedACs=UFR 4-02 Related ACs}} | {{UFR|front=UFR 4-02|description=UFR 4-02 Description|references=UFR 4-02 References|testcase=UFR 4-02 Test Case|evaluation=UFR 4-02 Evaluation|qualityreview=UFR 4-02 Quality Review|bestpractice=UFR 4-02 Best Practice Advice|relatedACs=UFR 4-02 Related ACs}} | ||
Latest revision as of 13:59, 12 February 2017
Confined coaxial swirling jets
Underlying Flow Regime 4-02 © copyright ERCOFTAC 2004
References
[1] Y. Lei, J. Zhang,L. Zhou: Simulation of swirling turbulent flows of coaxial jets in a combustor, Numerical Heat Transfer, Part A. vol.37, pp.189-199, 2000
[2] R.P. Lans et al.: Residence time distributions in a cold, confined swirl flow. Implications for chemical engineering combustion modelling, Chemical Engineering Science vol. 52, 1997
[3] L. Zaichik et al.: Modeling of dynamics, heat transfer and combustion in two-phase turbulent flows: 1. Isothermal flow, Experimental Thermal and Fluid Science, 1997
[4A] L.X. Zhou et al.: Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer, Powder Technology vol.112, 2000
[4B] L.X. Zhou et al.: Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model, Powder Technology vol.116, 2001
[5] M.A.R. Sharif, Y.K.E. Wong: Evaluation of the performance of three turbulence closure models in the prediction of confined swirling flows, Computers & Fluids vol. 24, 1995
[6] W. Meier et al.: Investigations in the TECFLAM swirling diffusion flame: Laser Raman measurements and CFD calculations, Applied Physics B vol.71, 2000
[7] R.M. So, S.A. Ahmed, H.C. Mongia: An experimental investigation of gas jets in confined swirling air flow, NAS CR-3832, 1984
[8] B.T. Vu, F.C. Gouldin: Flow measurements in a model swirl combustor, AIAA J. vol.20, 1982
[9] M. Sommerfeld, H.H. Qiu: Detailed measurement of a swirling particulate two-phase flow by a phase Doppler anemometer, Int. J. Heat and Fluid Flow vol.12, 1991
[10] TECFLAM web page, http://www.dlr.de/vt/desktopdefault.aspx/tabid-3067/4635_read-6730/ (old link is broken)
[11] S. Hogg, M.A. Leschziner: Computation of highly swirling confined flow with a Reynolds stress turbulence model, AIAA J. vol.27, 1989
[12] J. Schlüter, T. Schönfeld, T. Poinsot: Characterization of confined swirl flows using large eddy simulations, submitted for ASME Turbo Expo 2001
[13] T. Egly:Experimentelle untersuchung der nicht-reagierenden stromung des siemens V64.3A-brenners, studienarbeit, University of Karlsruhe(TH), Nr 394, December 1999
[14] J. Zhang, S. Nieh, L. Zhou: A new version of algebraic stress model for simulating strongly swirling turbulent flows, Numerical Heat Transfer, Part B: Fundamentals, vol.22, 1992
[15] D.G. Sloan, P.J. Smith, L.D. Smoot: Modeling of swirl in turbulent flow system, Prog. Energy & Comb. Science vol.12, 1986
[16] F. Ducros, F. Nicoud, T. Schönfeld: Large eddy simulation of compressible flows on hybrid meshes, In 11th Symposion on Turbulent Shear Flows, vol.3, 1997
[17] W. Krebs, G. Walz, S. Hoffmann, N. Syred: Detailed thermal analysis of annular combustors, ASME, (99-GT-45), 1999
[18] Roback R., Johnson B.V.: Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983
[19] Pierce C.D., Moin P.: LES of a confined coaxial jet with swirl and heat release, AIAA paper 98-2892, 1998
[20] Sommerfeld M., Ando A., Wennerberg D.: Swirling, particle-laden flows through a pipe expansion, Journal of Fluids Engineering, vol. 114, 1992
[21] Srinivasan R., Mongia H.C.: Numerical computations of swirling recirculating flow, Nasa CR-165197, 1980
[22] Sturgess G.J.: Aerothermal modeling program – phase I, NASA CR-168202, 1983
[23] Zalesak S.T.: Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol. 31, 1979
© copyright ERCOFTAC 2004
Contributors: Stefan Hohmann - MTU Aero Engines