UFR 4-19 Best Practice Advice: Difference between revisions

From KBwiki
Jump to navigation Jump to search
Line 11: Line 11:
= Best Practice Advice =
= Best Practice Advice =
== Key Physics ==
== Key Physics ==
Although the geometry of the Sajben converging-diverging diffuser is relatively simple and can be treated as two dimensional,
there are interesting flow features present in the flow and their capturing is a considerable challenge for turbulence models.
The key flow characteristics are summarized below:
*The primary structure that governs the examined transonic converging-diverging diffuser is the shock-wave that is formed in the transonic diffuser throat.
*The shock-wave position and strength strongly depend on the static pressure that is imposed at the outlet of the diffuser as a boundary condition. As the boundary pressure outlet decreases, (by keeping constant the total inlet conditions), a stronger shock-wave is formed in the diffuser throat resulting in an increased Mach number value. In the current UFR study, the two boundary conditions that were examined led to the formation of a “weak” and a “strong” shock-wave, associated with a lower and a higher maximum Mach number.
*The pressure after the shock-wave increases and the Mach number decreases. This may lead to boundary layer separation and to the formation of a recirculation region right after the shock-wave in the diverging part of the diffuser near the upper wall. In the current study, this behavior was measured for Mach~1.35 which is the “strong” case. For the “weak” case, Mach~1.25, the boundary layer remains attached along the diverging part of the diffuser.
*There is a strong shock-wave/turbulent boundary layer interaction that has to be precisely described by the adopted turbulence models in order to compute with accuracy the flow development and the possible recirculation region after the shock-wave depending on the boundary conditions.


== Numerical Modelling ==
== Numerical Modelling ==

Revision as of 07:40, 13 April 2016

Converging-diverging transonic diffuser

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Confined flows

Underlying Flow Regime 4-19

Best Practice Advice

Key Physics

Although the geometry of the Sajben converging-diverging diffuser is relatively simple and can be treated as two dimensional, there are interesting flow features present in the flow and their capturing is a considerable challenge for turbulence models. The key flow characteristics are summarized below:

  • The primary structure that governs the examined transonic converging-diverging diffuser is the shock-wave that is formed in the transonic diffuser throat.
  • The shock-wave position and strength strongly depend on the static pressure that is imposed at the outlet of the diffuser as a boundary condition. As the boundary pressure outlet decreases, (by keeping constant the total inlet conditions), a stronger shock-wave is formed in the diffuser throat resulting in an increased Mach number value. In the current UFR study, the two boundary conditions that were examined led to the formation of a “weak” and a “strong” shock-wave, associated with a lower and a higher maximum Mach number.
  • The pressure after the shock-wave increases and the Mach number decreases. This may lead to boundary layer separation and to the formation of a recirculation region right after the shock-wave in the diverging part of the diffuser near the upper wall. In the current study, this behavior was measured for Mach~1.35 which is the “strong” case. For the “weak” case, Mach~1.25, the boundary layer remains attached along the diverging part of the diffuser.
  • There is a strong shock-wave/turbulent boundary layer interaction that has to be precisely described by the adopted turbulence models in order to compute with accuracy the flow development and the possible recirculation region after the shock-wave depending on the boundary conditions.

Numerical Modelling

  • Discretisation method
  • Grids and grid resolution

Physical Modelling

  • Turbulence modelling
  • Transition modelling
  • Near-wall modelling
  • Other modelling

Application Uncertainties

Summarise any aspects of the UFR model set-up which are subject to uncertainty and to which the assessment parameters are particularly sensitive (e.g location and nature of transition to turbulence; specification of turbulence quantities at inlet; flow leakage through gaps etc.)

Recommendations for Future Work

Propose further studies which will improve the quality or scope of the BPA and perhaps bring it up to date. For example, perhaps further calculations of the test-case should be performed employing more recent, highly promising models of turbulence (e.g Spalart and Allmaras, Durbin's v2f, etc.). Or perhaps new experiments should be undertaken for which the values of key parameters (e.g. pressure gradient or streamline curvature) are much closer to those encountered in real application challenges.



Contributed by: Z. Vlahostergios, K. Yakinthos — Aristotle University of Thessaloniki, Greece

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References


© copyright ERCOFTAC 2024