UFR 4-02 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
(New page: {{UFR|front=UFR 4-02|description=UFR 4-02 Description|references=UFR 4-02 References|testcase=UFR 4-02 Test Case|evaluation=UFR 4-02 Evaluation|qualityreview=UFR 4-02 Quality Review|bestp...)
 
Line 15: Line 15:
== References ==
== References ==


 


[1]          Y. Lei, J. Zhang,L. Zhou: Simulation of swirling turbulent flows of coaxial jets in a combustor, NHT vol.37, 2000
[1]         Y. Lei, J. Zhang,L. Zhou: Simulation of swirling turbulent flows of coaxial jets in a combustor, Numerical Heat Transfer, Part A. vol.37, pp.189-199, 2000


[2]          R.P. Lans et al.: Residence time distributions in a cold, confined swirl flow. Implications for chemical engineering combustion modelling, Chemical Engineering Science vol. 52, 1997
[2]         R.P. Lans et al.: Residence time distributions in a cold, confined swirl flow. Implications for chemical engineering combustion modelling, Chemical Engineering Science vol. 52, 1997


[3]          L. Zaichik et al.: Modeling of dynamics, heat transfer and combustion in two-phase turbulent flows: 1. Isothermal flow, Experimental Thermal and Fluid Science, 1997
[3]         L. Zaichik et al.: Modeling of dynamics, heat transfer and combustion in two-phase turbulent flows: 1. Isothermal flow, Experimental Thermal and Fluid Science, 1997


[4A] L.X. Zhou et al.: Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer, Powder Technology vol.112, 2000
[4A] L.X. Zhou et al.: Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer, Powder Technology vol.112, 2000
Line 27: Line 27:
[4B] L.X. Zhou et al.: Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model, Powder Technology vol.116, 2001
[4B] L.X. Zhou et al.: Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model, Powder Technology vol.116, 2001


[5]          M.A.R. Sharif, Y.K.E. Wong: Evaluation of the performance of three turbulence closure models in the prediction of confined swirling flows, Computers & Fluids vol. 24, 1995
[5]         M.A.R. Sharif, Y.K.E. Wong: Evaluation of the performance of three turbulence closure models in the prediction of confined swirling flows, Computers & Fluids vol. 24, 1995


[6]          W. Meier et al.: Investigations in the TECFLAM swirling diffusion flame: Laser Raman measurements and CFD calculations, Applied Physics B vol.71, 2000
[6]         W. Meier et al.: Investigations in the TECFLAM swirling diffusion flame: Laser Raman measurements and CFD calculations, Applied Physics B vol.71, 2000


[7]          R.M. So, S.A. Ahmed, H.C. Mongia: An experimental investigation of gas jets in confined swirling air flow, NAS CR-3832, 1984
[7]         R.M. So, S.A. Ahmed, H.C. Mongia: An experimental investigation of gas jets in confined swirling air flow, NAS CR-3832, 1984


[8]          B.T. Vu, F.C. Gouldin: Flow measurements in a model swirl combustor, AIAA J. vol.20, 1982
[8]         B.T. Vu, F.C. Gouldin: Flow measurements in a model swirl combustor, AIAA J. vol.20, 1982


[9]          M. Sommerfeld, H.H. Qiu: Detailed measurement of a swirling particulate two-phase flow by a phase Doppler anemometer, Int. J. Heat and Fluid Flow vol.12, 1991
[9]         M. Sommerfeld, H.H. Qiu: Detailed measurement of a swirling particulate two-phase flow by a phase Doppler anemometer, Int. J. Heat and Fluid Flow vol.12, 1991


<span lang="PL">[10]<span style="font: 7.0pt &quot;Times New Roman&quot;">      </span></span>TECFLAM web page, [http://www.tu-darmstadt.de/fb/mb/ekt/tecflam www.tu-darmstadt.de/fb/mb/ekt/tecflam]
<span lang="PL">[10]<span style="font: 7.0pt &quot;Times New Roman&quot;">     </span></span>TECFLAM web page, [http://www.tu-darmstadt.de/fb/mb/ekt/tecflam www.tu-darmstadt.de/fb/mb/ekt/tecflam]


[11]      S. Hogg, M.A. Leschziner: Computation of highly swirling confined flow with a Reynolds stress turbulence model, AIAA J. vol.27, 1989
[11]     S. Hogg, M.A. Leschziner: Computation of highly swirling confined flow with a Reynolds stress turbulence model, AIAA J. vol.27, 1989


[12]      J. Schlüter, T. Schönfeld, T. Poinsot: Characterization of confined swirl flows using large eddy simulations, submitted for ASME Turbo Expo 2001
[12]     J. Schlüter, T. Schönfeld, T. Poinsot: Characterization of confined swirl flows using large eddy simulations, submitted for ASME Turbo Expo 2001


<span lang="DE">[13]<span style="font: 7.0pt &quot;Times New Roman&quot;">      </span></span>T. Egly:Experimentelle untersuchung der nicht-reagierenden stromung des siemens V64.3A-brenners, studienarbeit, University of Karlsruhe(TH), Nr 394, December 1999
<span lang="DE">[13]<span style="font: 7.0pt &quot;Times New Roman&quot;">     </span></span>T. Egly:Experimentelle untersuchung der nicht-reagierenden stromung des siemens V64.3A-brenners, studienarbeit, University of Karlsruhe(TH), Nr 394, December 1999


[14]      J. Zhang, S. Nieh, L. Zhou: A new version of algebraic stress model for simulating strongly swirling turbulent flows, Numerical Heat Transfer, Part B: Fundamentals, vol.22, 1992
[14]     J. Zhang, S. Nieh, L. Zhou: A new version of algebraic stress model for simulating strongly swirling turbulent flows, Numerical Heat Transfer, Part B: Fundamentals, vol.22, 1992


[15]      D.G. Sloan, P.J. Smith, L.D. Smoot: Modeling of swirl in turbulent flow system, Prog. Energy &amp; Comb. Science vol.12, 1986
[15]     D.G. Sloan, P.J. Smith, L.D. Smoot: Modeling of swirl in turbulent flow system, Prog. Energy &amp; Comb. Science vol.12, 1986


[16]      F. Ducros, F. Nicoud, T. Schönfeld: Large eddy simulation of compressible flows on hybrid meshes, In 11<sup>th</sup> Symposion on Turbulent Shear Flows, vol.3, 1997
[16]     F. Ducros, F. Nicoud, T. Schönfeld: Large eddy simulation of compressible flows on hybrid meshes, In 11<sup>th</sup> Symposion on Turbulent Shear Flows, vol.3, 1997


[17]      W. Krebs, G. Walz, S. Hoffmann, N. Syred: Detailed thermal analysis of annular combustors, ASME, (99-GT-45), 1999
[17]     W. Krebs, G. Walz, S. Hoffmann, N. Syred: Detailed thermal analysis of annular combustors, ASME, (99-GT-45), 1999


[18]      Roback R., Johnson B.V.: Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983
[18]     Roback R., Johnson B.V.: Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983


[19]      Pierce C.D., Moin P.: LES of a confined coaxial jet with swirl and heat release, AIAA paper 98-2892, 1998
[19]     Pierce C.D., Moin P.: LES of a confined coaxial jet with swirl and heat release, AIAA paper 98-2892, 1998


[20]      Sommerfeld M., Ando A., Wennerberg D.: Swirling, particle-laden flows through a pipe expansion, Journal of Fluids Engineering, vol. 114, 1992
[20]     Sommerfeld M., Ando A., Wennerberg D.: Swirling, particle-laden flows through a pipe expansion, Journal of Fluids Engineering, vol. 114, 1992


[21]      Srinivasan R., Mongia H.C.: Numerical computations of swirling recirculating flow, Nasa CR-165197, 1980
[21]     Srinivasan R., Mongia H.C.: Numerical computations of swirling recirculating flow, Nasa CR-165197, 1980


[22]      Sturgess G.J.: Aerothermal modeling program – phase I, NASA CR-168202, 1983
[22]     Sturgess G.J.: Aerothermal modeling program – phase I, NASA CR-168202, 1983


[23]      Zalesak S.T.: Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol. 31, 1979
[23]     Zalesak S.T.: Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol. 31, 1979





Revision as of 15:14, 2 April 2009


Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References




Confined coaxial swirling jets 

Underlying Flow Regime 4-02               © copyright ERCOFTAC 2004


References

[1] Y. Lei, J. Zhang,L. Zhou: Simulation of swirling turbulent flows of coaxial jets in a combustor, Numerical Heat Transfer, Part A. vol.37, pp.189-199, 2000

[2] R.P. Lans et al.: Residence time distributions in a cold, confined swirl flow. Implications for chemical engineering combustion modelling, Chemical Engineering Science vol. 52, 1997

[3] L. Zaichik et al.: Modeling of dynamics, heat transfer and combustion in two-phase turbulent flows: 1. Isothermal flow, Experimental Thermal and Fluid Science, 1997

[4A] L.X. Zhou et al.: Studies on the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer, Powder Technology vol.112, 2000

[4B] L.X. Zhou et al.: Simulation of swirling gas-particle flows using an improved second-order moment two-phase turbulence model, Powder Technology vol.116, 2001

[5] M.A.R. Sharif, Y.K.E. Wong: Evaluation of the performance of three turbulence closure models in the prediction of confined swirling flows, Computers & Fluids vol. 24, 1995

[6] W. Meier et al.: Investigations in the TECFLAM swirling diffusion flame: Laser Raman measurements and CFD calculations, Applied Physics B vol.71, 2000

[7] R.M. So, S.A. Ahmed, H.C. Mongia: An experimental investigation of gas jets in confined swirling air flow, NAS CR-3832, 1984

[8] B.T. Vu, F.C. Gouldin: Flow measurements in a model swirl combustor, AIAA J. vol.20, 1982

[9] M. Sommerfeld, H.H. Qiu: Detailed measurement of a swirling particulate two-phase flow by a phase Doppler anemometer, Int. J. Heat and Fluid Flow vol.12, 1991

[10] TECFLAM web page, www.tu-darmstadt.de/fb/mb/ekt/tecflam

[11] S. Hogg, M.A. Leschziner: Computation of highly swirling confined flow with a Reynolds stress turbulence model, AIAA J. vol.27, 1989

[12] J. Schlüter, T. Schönfeld, T. Poinsot: Characterization of confined swirl flows using large eddy simulations, submitted for ASME Turbo Expo 2001

[13] T. Egly:Experimentelle untersuchung der nicht-reagierenden stromung des siemens V64.3A-brenners, studienarbeit, University of Karlsruhe(TH), Nr 394, December 1999

[14] J. Zhang, S. Nieh, L. Zhou: A new version of algebraic stress model for simulating strongly swirling turbulent flows, Numerical Heat Transfer, Part B: Fundamentals, vol.22, 1992

[15] D.G. Sloan, P.J. Smith, L.D. Smoot: Modeling of swirl in turbulent flow system, Prog. Energy & Comb. Science vol.12, 1986

[16] F. Ducros, F. Nicoud, T. Schönfeld: Large eddy simulation of compressible flows on hybrid meshes, In 11th Symposion on Turbulent Shear Flows, vol.3, 1997

[17] W. Krebs, G. Walz, S. Hoffmann, N. Syred: Detailed thermal analysis of annular combustors, ASME, (99-GT-45), 1999

[18] Roback R., Johnson B.V.: Mass and momentum turbulent transport experiments with confined swirling coaxial jets, NASA CR-168252, 1983

[19] Pierce C.D., Moin P.: LES of a confined coaxial jet with swirl and heat release, AIAA paper 98-2892, 1998

[20] Sommerfeld M., Ando A., Wennerberg D.: Swirling, particle-laden flows through a pipe expansion, Journal of Fluids Engineering, vol. 114, 1992

[21] Srinivasan R., Mongia H.C.: Numerical computations of swirling recirculating flow, Nasa CR-165197, 1980

[22] Sturgess G.J.: Aerothermal modeling program – phase I, NASA CR-168202, 1983

[23] Zalesak S.T.: Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol. 31, 1979


© copyright ERCOFTAC 2004



Contributors: Stefan Hohmann - MTU Aero Engines


Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References