UFR 3-35 References

From KBwiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Cylinder-wall junction flow

Underlying Flow Regime 3-35

References

  • Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015). Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. Journal of Fluid Mechanics 776:475-511.
  • Baghbadorani, D. A., Beheshti, A. & Ataie-Ashtiani, B. (2017) Scour hole depth prediction around pile groups: review, comparison of existing methods, and proposition of a new approach. Natural Hazards 88(2), 977-1001.
  • Baker, C. J. (1980) The turbulent horseshoe vortex. Journal of wind engineering and industrial aerodynamics 6, 9-23.
  • Bruns, J., Dengel, P. & Fernholz, H. H. (1992). Mean flow and turbulence measurements in an incompressible two-dimensional turbulent boundary layer. Part I: data. Tech. Rep., Herman-Föttinger-Institut für Thermo- und Fluiddynamik, TU Berlin.
  • Clauser, F.H. (1954). Turbulent boundary layer in adverse pressure gradients. J. Aero. Sci. 21,
91–108.
  • Dargahi, B. (1989). The turbulent flow field around a circular cylinder. Experiments in Fluids 8(1-2):1-12.
  • Devenport, W. J. and Simpson, R. L. (1990). Timedependent and time-averaged turbulence structure near the nose of a wing-body junction. Journal of Fluid Mechanics 210:23-55.
  • Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. Flow, Turbulence and Combustion 86(2):231-262.
  • Ettema, R., Kirkil, G. & Muste, M. (2006) Similitude of Large-Scale Turbulence in Experiments on Local Scour at Cylinders. Journal of Hydraulic Engineering 132(1),33-40.
  • Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technical University of Munich, Germany.
  • Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Physics of Fluids 27(7).
  • Laursen, E. M. & Toch, A. (1956) Scour around bridge piers and abutements. Tech. Rep. Iowa Institute of Hydraulic Research.
  • Link, O., Pfleger, F. & Zanke, U. (2008) Characteristics of developping scour-holes at sand-embedded cylinder. International Journal of Sediment Research 23, 258-266.
  • Manhart, M. (2004) A zonal grid algorithm for DNS of turbulent boundary layers. Computers and Fluids 33(3):435–461.
  • Martinuzzi, R. & Tropea, C. (1993) The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow. Journal of Fluids Engineering 115(1),85-92.
  • Melville, B. W. (2008) The physics of local scour at bridge piers. Fourth International Conference on Scour and Erosion (ICSE-4), Tokyo, Japan
  • Melville, B. W. & Raudkivi, A. J. (1977) Flow characteristics in local scour at bridge piers. Journal of Hydraulic Research 15(4), 373-380.
  • Nicoud, F. & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62(3):183–200.
  • Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids (19):045107.
  • Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. PhD thesis, Technische Universität München, München.
  • Peller, N., Duc, A. L., Tremblay, F. & Manhart, M. (2006) High-order stable interpolations for immersed boundary methods. International Journal of Numerical Methods in Fluids 52:1175–1193.
  • Pfleger, F. (2011) Experimentelle Untersuchung der Auskolkung um einen zylindrischen Brückenpfeiler. PhD thesis in german, Technical University of Munich, Germany.
  • Roulund, A., Mutlu Sumer, B., Fredsoe, J. & Michelsen, J. (2005) Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics 534, 351-401.
  • Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technical University of Munich, Germany.
  • Schanderl, W., Jenssen, U., and Manhart, M. (2017a). Near-wall stress balance in front of a wall-mounted cylinder. Flow, Turbulence and Combustion 99(3-4):665–684.
  • Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017b). The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. Journal of Fluid Mechanics 827:285-321.
  • Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. Computers and Fluids 128:16-29.
  • Schanderl, W. and Manhart, M. (2018). Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow. Flow, Turbulence and Combustion 101(2):499–519.
  • Simpson, R. L. (2001). Junction Flows. Annual Review of Fluid Mechanics, 33:415-443.


Contributed by: Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart — Technical University Munich

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References



© copyright ERCOFTAC 2019