Difference between revisions of "UFR 3-35 References"

From KBwiki
Jump to navigation Jump to search
Line 7: Line 7:
 
== Underlying Flow Regime 3-35 ==
 
== Underlying Flow Regime 3-35 ==
 
= References =
 
= References =
 
+
{|
[Apsilidis et al., 2015] Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015).
+
* Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015). Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. ''Journal of Fluid Mechanics'' 776:475-511.
Time-resolved  
+
* Dargahi, B. (1989). The turbulent flow field around a circular cylinder. ''Experiments in Fluids'' 8(1-2):1-12.
ow dynamics and Reynolds number e�ects at a wall-cylinder junction.
+
* Devenport, W. J. and Simpson, R. L. (1990). Timedependent and time-averaged turbulence structure near the nose of a wing-body junction. ''Journal of Fluid Mechanics'' 210:23-55.
Journal of Fluid Mechanics, 776:475{511.
+
* Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. ''Flow, Turbulence and Combustion'' 86(2):231-262.  
[Dargahi, 1989] Dargahi, B. (1989). The turbulent  
+
* Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technische Universität München, München.
ow �eld around a circular cylinder.
+
* Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. ''Physics of Fluids'' 27(7).
Experiments in Fluids, 8(1-2):1{12.
+
* Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. ''Physics of
[Devenport and Simpson, 1990] Devenport, W. J. and Simpson, R. L. (1990). Timedependent
+
Fluids'' (19):045107.  
and time-averaged turbulence structure near the nose of a wing-body junction.
+
* Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technische Universität München, München.  
Journal of Fluid Mechanics, 210:23{55.
+
* Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017). The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. ''Journal of Fluid Mechanics'' 827:285-321.  
[Escauriaza and Sotiropoulos, 2011] Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds
+
* Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. ''Computers and Fluids'' 128:16-29.  
Number E�ects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System.
+
|}
Flow, Turbulence and Combustion, 86(2):231{262.
 
[Jenssen, 2019] Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring
 
Bridge Pier. PhD thesis, Technische Universitat Munchen, Munchen.
 
[Kirkil and Constantinescu, 2015] Kirkil, G. and Constantinescu, G. (2015). E�ects of cylinder
 
Reynolds number on the turbulent horseshoe vortex system and near wake of a surfacemounted
 
circular cylinder. Physics of Fluids, 27(7).
 
[Paik et al., 2007] Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal
 
dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of
 
Fluids, 19:045107.
 
[Schanderl, 2018] Schanderl, W. (2018). Large-Eddy Simulation of the  
 
ow around a wall-
 
mounted cylinder. PhD thesis, Technische Universitat Munchen, Munchen.
 
[Schanderl et al., 2017] Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017).
 
The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder.
 
Journal of Fluid Mechanics, 827:285{321.
 
[Schanderl and Manhart, 2016] Schanderl, W. and Manhart, M. (2016). Reliability of wall
 
shear stress estimations of the  
 
ow around a wall-mounted cylinder. Computers and
 
Fluids, 128:16{29.
 
 
 
  
 
----
 
----

Revision as of 13:21, 28 August 2019

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Cylinder-wall junction flow

Underlying Flow Regime 3-35

References

  • Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015). Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. Journal of Fluid Mechanics 776:475-511.
  • Dargahi, B. (1989). The turbulent flow field around a circular cylinder. Experiments in Fluids 8(1-2):1-12.
  • Devenport, W. J. and Simpson, R. L. (1990). Timedependent and time-averaged turbulence structure near the nose of a wing-body junction. Journal of Fluid Mechanics 210:23-55.
  • Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. Flow, Turbulence and Combustion 86(2):231-262.
  • Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technische Universität München, München.
  • Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Physics of Fluids 27(7).
  • Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of
Fluids (19):045107.
  • Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technische Universität München, München.
  • Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017). The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. Journal of Fluid Mechanics 827:285-321.
  • Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. Computers and Fluids 128:16-29.


Contributed by: Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart — Technical University Munich

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References



© copyright ERCOFTAC 2019