Difference between revisions of "UFR 3-35 References"

From KBwiki
Jump to navigation Jump to search
m (Dave.Ellacott moved page Lib:UFR 3-35 References to UFR 3-35 References over redirect)
 
(10 intermediate revisions by one other user not shown)
Line 7: Line 7:
 
== Underlying Flow Regime 3-35 ==
 
== Underlying Flow Regime 3-35 ==
 
= References =
 
= References =
 
+
{|
[Apsilidis et al., 2015] Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015).
+
* Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015). Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. ''Journal of Fluid Mechanics'' 776, 475-511.
Time-resolved  
+
* Baghbadorani, D. A., Beheshti, A. & Ataie-Ashtiani, B. (2017) Scour hole depth prediction around pile groups: review, comparison of existing methods, and proposition of a new approach. ''Natural Hazards'' 88(2), 977-1001.
ow dynamics and Reynolds number e�ects at a wall-cylinder junction.
+
* Baker, C. J. (1980) The turbulent horseshoe vortex. ''Journal of wind engineering and industrial aerodynamics'' 6, 9-23.
Journal of Fluid Mechanics, 776:475{511.
+
* Bruns, J., Dengel, P. & Fernholz, H. H. (1992). Mean flow and turbulence measurements in an incompressible two-dimensional turbulent boundary layer. Part I: data. Tech. Rep., Herman-Föttinger-Institut für Thermo- und Fluiddynamik, TU Berlin.
[Dargahi, 1989] Dargahi, B. (1989). The turbulent  
+
* Clauser, F.H. (1954). Turbulent boundary layer in adverse pressure gradients. ''J. Aero. Sci.'' 21:91–108.
ow �eld around a circular cylinder.
+
* Dargahi, B. (1989). The turbulent flow field around a circular cylinder. ''Experiments in Fluids'' 8(1-2):1-12.
Experiments in Fluids, 8(1-2):1{12.
+
* Devenport, W. J. and Simpson, R. L. (1990). Timedependent and time-averaged turbulence structure near the nose of a wing-body junction. ''Journal of Fluid Mechanics'' 210:23-55.
[Devenport and Simpson, 1990] Devenport, W. J. and Simpson, R. L. (1990). Timedependent
+
* Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. ''Flow, Turbulence and Combustion'' 86(2):231-262.  
and time-averaged turbulence structure near the nose of a wing-body junction.
+
* Ettema, R., Kirkil, G. & Muste, M. (2006). Similitude of Large-Scale Turbulence in Experiments on Local Scour at Cylinders. ''Journal of Hydraulic Engineering'' 132(1),33-40.
Journal of Fluid Mechanics, 210:23{55.
+
* Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technical University of Munich, Germany.
[Escauriaza and Sotiropoulos, 2011] Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds
+
* Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. ''Physics of Fluids'' 27(7), 075102.
Number E�ects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System.
+
* Laursen, E. M. & Toch, A. (1956). Scour around bridge piers and abutements. Tech. Rep. ''Iowa Institute of Hydraulic Research''.
Flow, Turbulence and Combustion, 86(2):231{262.
+
* Link, O., Pfleger, F. & Zanke, U. (2008). Characteristics of developping scour-holes at sand-embedded cylinder. ''International Journal of Sediment Research'' 23, 258-266.
[Jenssen, 2019] Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring
+
* Manhart, M. (2004). A zonal grid algorithm for DNS of turbulent boundary layers. ''Computers and Fluids'' 33(3):435–461.
Bridge Pier. PhD thesis, Technische Universitat Munchen, Munchen.
+
* Martinuzzi, R. & Tropea, C. (1993). The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow. ''Journal of Fluids Engineering'' 115(1),85-92.
[Kirkil and Constantinescu, 2015] Kirkil, G. and Constantinescu, G. (2015). E�ects of cylinder
+
* Melville, B. W. (2008). The physics of local scour at bridge piers. ''Fourth International Conference on Scour and Erosion (ICSE-4)'', Tokyo, Japan
Reynolds number on the turbulent horseshoe vortex system and near wake of a surfacemounted
+
* Melville, B. W. & Raudkivi, A. J. (1977). Flow characteristics in local scour at bridge piers. ''Journal of Hydraulic Research'' 15(4), 373-380.
circular cylinder. Physics of Fluids, 27(7).
+
* Nicoud, F. & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tensor. ''Flow, Turbulence and Combustion'' 62(3):183–200.
[Paik et al., 2007] Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal
+
* Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. ''Physics of Fluids'' (19):045107.
dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of
+
* Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. PhD thesis, Technische Universität München, München.
Fluids, 19:045107.
+
* Peller, N., Duc, A. L., Tremblay, F. & Manhart, M. (2006). High-order stable interpolations for immersed boundary methods. ''International Journal of Numerical Methods in Fluids'' 52:1175–1193.
[Schanderl, 2018] Schanderl, W. (2018). Large-Eddy Simulation of the  
+
* Pfleger, F. (2011). Experimentelle Untersuchung der Auskolkung um einen zylindrischen Brückenpfeiler. PhD thesis in german, Technical University of Munich, Germany.
ow around a wall-
+
* Roulund, A., Mutlu Sumer, B., Fredsoe, J. & Michelsen, J. (2005). Numerical and experimental investigation of flow and scour around a circular pile. ''Journal of Fluid Mechanics'' 534, 351-401.
mounted cylinder. PhD thesis, Technische Universitat Munchen, Munchen.
+
* Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technical University of Munich, Germany.  
[Schanderl et al., 2017] Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017).
+
* Schanderl, W., Jenssen, U., and Manhart, M. (2017a). Near-wall stress balance in front of a wall-mounted cylinder. ''Flow, Turbulence and Combustion'' 99(3-4):665–684.
The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder.
+
* Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017b). The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. ''Journal of Fluid Mechanics'' 827:285-321.  
Journal of Fluid Mechanics, 827:285{321.
+
* Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. ''Computers and Fluids'' 128:16-29.  
[Schanderl and Manhart, 2016] Schanderl, W. and Manhart, M. (2016). Reliability of wall
+
* Schanderl, W. and Manhart, M. (2018). Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow. ''Flow, Turbulence and Combustion'' 101(2):499–519.
shear stress estimations of the  
+
* Simpson, R. L. (2001). Junction Flows. ''Annual Review of Fluid Mechanics'', 33:415-443.
ow around a wall-mounted cylinder. Computers and
+
|}
Fluids, 128:16{29.
 
 
 
  
 
----
 
----

Latest revision as of 15:53, 4 November 2020

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References

Cylinder-wall junction flow

Underlying Flow Regime 3-35

References

  • Apsilidis, N., Diplas, P., Dancey, C. L., and Bouratsis, P. (2015). Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. Journal of Fluid Mechanics 776, 475-511.
  • Baghbadorani, D. A., Beheshti, A. & Ataie-Ashtiani, B. (2017) Scour hole depth prediction around pile groups: review, comparison of existing methods, and proposition of a new approach. Natural Hazards 88(2), 977-1001.
  • Baker, C. J. (1980) The turbulent horseshoe vortex. Journal of wind engineering and industrial aerodynamics 6, 9-23.
  • Bruns, J., Dengel, P. & Fernholz, H. H. (1992). Mean flow and turbulence measurements in an incompressible two-dimensional turbulent boundary layer. Part I: data. Tech. Rep., Herman-Föttinger-Institut für Thermo- und Fluiddynamik, TU Berlin.
  • Clauser, F.H. (1954). Turbulent boundary layer in adverse pressure gradients. J. Aero. Sci. 21:91–108.
  • Dargahi, B. (1989). The turbulent flow field around a circular cylinder. Experiments in Fluids 8(1-2):1-12.
  • Devenport, W. J. and Simpson, R. L. (1990). Timedependent and time-averaged turbulence structure near the nose of a wing-body junction. Journal of Fluid Mechanics 210:23-55.
  • Escauriaza, C. and Sotiropoulos, F. (2011). Reynolds Number Effects on the Coherent Dynamics of the Turbulent Horseshoe Vortex System. Flow, Turbulence and Combustion 86(2):231-262.
  • Ettema, R., Kirkil, G. & Muste, M. (2006). Similitude of Large-Scale Turbulence in Experiments on Local Scour at Cylinders. Journal of Hydraulic Engineering 132(1),33-40.
  • Jenssen, U. (2019). Experimental Study of the Flow Around a Scouring Bridge Pier. PhD thesis, Technical University of Munich, Germany.
  • Kirkil, G. and Constantinescu, G. (2015). Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder. Physics of Fluids 27(7), 075102.
  • Laursen, E. M. & Toch, A. (1956). Scour around bridge piers and abutements. Tech. Rep. Iowa Institute of Hydraulic Research.
  • Link, O., Pfleger, F. & Zanke, U. (2008). Characteristics of developping scour-holes at sand-embedded cylinder. International Journal of Sediment Research 23, 258-266.
  • Manhart, M. (2004). A zonal grid algorithm for DNS of turbulent boundary layers. Computers and Fluids 33(3):435–461.
  • Martinuzzi, R. & Tropea, C. (1993). The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow. Journal of Fluids Engineering 115(1),85-92.
  • Melville, B. W. (2008). The physics of local scour at bridge piers. Fourth International Conference on Scour and Erosion (ICSE-4), Tokyo, Japan
  • Melville, B. W. & Raudkivi, A. J. (1977). Flow characteristics in local scour at bridge piers. Journal of Hydraulic Research 15(4), 373-380.
  • Nicoud, F. & Ducros, F. (1999). Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion 62(3):183–200.
  • Paik, J., Escauriaza, C., and Sotiropoulos, F. (2007). On the bimodal dynamics of the turbulent horseshoe vortex system in a wing-body junction. Physics of Fluids (19):045107.
  • Peller, N. (2010). Numerische Simulation turbulenter Strömungen mit Immersed Boundaries. PhD thesis, Technische Universität München, München.
  • Peller, N., Duc, A. L., Tremblay, F. & Manhart, M. (2006). High-order stable interpolations for immersed boundary methods. International Journal of Numerical Methods in Fluids 52:1175–1193.
  • Pfleger, F. (2011). Experimentelle Untersuchung der Auskolkung um einen zylindrischen Brückenpfeiler. PhD thesis in german, Technical University of Munich, Germany.
  • Roulund, A., Mutlu Sumer, B., Fredsoe, J. & Michelsen, J. (2005). Numerical and experimental investigation of flow and scour around a circular pile. Journal of Fluid Mechanics 534, 351-401.
  • Schanderl, W. (2018). Large-Eddy Simulation of the flow around a wall-mounted cylinder. PhD thesis, Technical University of Munich, Germany.
  • Schanderl, W., Jenssen, U., and Manhart, M. (2017a). Near-wall stress balance in front of a wall-mounted cylinder. Flow, Turbulence and Combustion 99(3-4):665–684.
  • Schanderl, W., Jenssen, U., Strobl, C., and Manhart, M. (2017b). The structure and budget of turbulent kinetic energy in front of a wall-mounted cylinder. Journal of Fluid Mechanics 827:285-321.
  • Schanderl, W. and Manhart, M. (2016). Reliability of wall shear stress estimations of the flow around a wall-mounted cylinder. Computers and Fluids 128:16-29.
  • Schanderl, W. and Manhart, M. (2018). Dissipation of Turbulent Kinetic Energy in a Cylinder Wall Junction Flow. Flow, Turbulence and Combustion 101(2):499–519.
  • Simpson, R. L. (2001). Junction Flows. Annual Review of Fluid Mechanics, 33:415-443.


Contributed by: Ulrich Jenssen, Wolfgang Schanderl, Michael Manhart — Technical University Munich

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References



© copyright ERCOFTAC 2019