UFR 2-04 References: Difference between revisions

From KBwiki
Jump to navigation Jump to search
m (Dave.Ellacott moved page SilverP:UFR 2-04 References to UFR 2-04 References over redirect)
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{UFR|front=UFR 2-04|description=UFR 2-04 Description|references=UFR 2-04 References|testcase=UFR 2-04 Test Case|evaluation=UFR 2-04 Evaluation|qualityreview=UFR 2-04 Quality Review|bestpractice=UFR 2-04 Best Practice Advice|relatedACs=UFR 2-04 Related ACs}}
{{UFR|front=UFR 2-04|description=UFR 2-04 Description|references=UFR 2-04 References|testcase=UFR 2-04 Test Case|evaluation=UFR 2-04 Evaluation|qualityreview=UFR 2-04 Quality Review|bestpractice=UFR 2-04 Best Practice Advice|relatedACs=UFR 2-04 Related ACs}}


Line 19: Line 18:
Biswas D., Iwasaki, H., and Ishizuka, M., (1997), “Numerical Analysis of Two-Dimensional Compressible Viscous Flow in Turbomachinery Cascades Using an Improved k-ε Turbulence Model”, '''ASME Paper 97-GT-417'''.  
Biswas D., Iwasaki, H., and Ishizuka, M., (1997), “Numerical Analysis of Two-Dimensional Compressible Viscous Flow in Turbomachinery Cascades Using an Improved k-ε Turbulence Model”, '''ASME Paper 97-GT-417'''.  


Craft, T. J., Launder, B. E., and Suga, K., (1993), “Extending the Applicability of Eddy viscosity Models through the Use of Deformation Invariants and Non-Linear Elements,” '''''Proc. 5<sup>th</sup> Int. Symp. Refined Flow Modelling and Turbulent Measurements''''', p. 125.
Craft, T. J., Launder, B. E., and Suga, K., (1993), &ldquo;Extending the Applicability of Eddy viscosity Models through the Use of Deformation Invariants and Non-Linear Elements,&rdquo; '''''Proc. 5<sup>th</sup> Int. Symp. Refined Flow Modelling and Turbulent Measurements''''', p. 125.


Deutsch, S., and Zierke, W. C., (1987), “The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 1 - A Unique Experimental Facility,” '''''ASME Paper 87-GT-248'''''.
Deutsch, S., and Zierke, W. C., (1987), &ldquo;The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 1 - A Unique Experimental Facility,&rdquo; '''''ASME Paper 87-GT-248'''''.


Deutsch, S., and Zierke, W. C., (1987), “The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 2 - Suction Surface Boundary Layers,” '''''ASME Paper 87-GT-249'''''.
Deutsch, S., and Zierke, W. C., (1987), &ldquo;The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 2 - Suction Surface Boundary Layers,&rdquo; '''''ASME Paper 87-GT-249'''''.


Deutsch, S., and Zierke, W. C., (1987), “The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 3 - Pressure Surface Boundary Layers and the Near Wake,” '''''ASME Paper 87-GT-250'''''.
Deutsch, S., and Zierke, W. C., (1987), &ldquo;The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 3 - Pressure Surface Boundary Layers and the Near Wake,&rdquo; '''''ASME Paper 87-GT-250'''''.


Elazar, Y., and Shreeve, R. P., (1990), “Viscous Flow in a Controlled Diffusion Compressor Cascade With Increasing Incidence,” '''ASME J. Turbomachinery''', Vol. 112, pp. 256-266.
Elazar, Y., and Shreeve, R. P., (1990), &ldquo;Viscous Flow in a Controlled Diffusion Compressor Cascade With Increasing Incidence,&rdquo; '''ASME J. Turbomachinery''', Vol. 112, pp. 256-266.


Emmons, H. W., (1951), “The Laminar-Turbulent Transition in a Boundary Layer – Part I,” '''J. Aerospace Science''', Vol. 18, No. 7, pp. 490-498.
Emmons, H. W., (1951), &ldquo;The Laminar-Turbulent Transition in a Boundary Layer &mdash; Part I,&rdquo; '''J. Aerospace Science''', Vol. 18, No. 7, pp. 490-498.


Kang, S.-H., Lik, J. S., Choi M.-R., and Kim, K.-Y., (1995), “Numerical Calculations of the Turbulent Flow Through a Controlled Diffusion Compressor Cascade,” '''ASME J. Turbomachinery''', Vol. 117, pp. 223-230.
Kang, S.-H., Lik, J. S., Choi M.-R., and Kim, K.-Y., (1995), &ldquo;Numerical Calculations of the Turbulent Flow Through a Controlled Diffusion Compressor Cascade,&rdquo; '''ASME J. Turbomachinery''', Vol. 117, pp. 223-230.


Launder, B. E., and Sharma, B. I., (1974), “Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flows Near a Spinning Disk,” '''Letters Heat Mass Transfer''', Vol. 1, pp. 131-138.
Launder, B. E., and Sharma, B. I., (1974), &ldquo;Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flows Near a Spinning Disk,&rdquo; '''Letters Heat Mass Transfer''', Vol. 1, pp. 131-138.


Leonard, B. P., (1979), “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,” '''Comp. Meth. Applied Mech. Engineering''', Vol. 19, pp. 59-98.
Leonard, B. P., (1979), &ldquo;A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,&rdquo; '''Comp. Meth. Applied Mech. Engineering''', Vol. 19, pp. 59-98.


Lien, F. S., Chen, W. L., and Leschziner, M. A., (1996), “A Multiblock Implementation of a Non-Orthogonal, Collocated Finite Volume Algorithm for Complex Turbulent Flows,” '''Int. J. Num. Methods Fluids''', Vol. 23, pp. 567-588.
Lien, F. S., Chen, W. L., and Leschziner, M. A., (1996), &ldquo;A Multiblock Implementation of a Non-Orthogonal, Collocated Finite Volume Algorithm for Complex Turbulent Flows,&rdquo; '''Int. J. Num. Methods Fluids''', Vol. 23, pp. 567-588.


Lien, F. S., and Leschziner, M. A., (1993), “Computational Modelling of 3D Turbulent flow in S-Diffuser and Transition Ducts,” '''Letters Heat Mass Transfer''', Vol. 131.
Lien, F. S., and Leschziner, M. A., (1993), &ldquo;Computational Modelling of 3D Turbulent flow in S-Diffuser and Transition Ducts,&rdquo; '''Letters Heat Mass Transfer''', Vol. 131.


Mayle, R. E., (1991), “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” '''ASME J. Turbomachinery''', Vol. 113, pp. 509–537.
Mayle, R. E., (1991), &ldquo;The Role of Laminar-Turbulent Transition in Gas Turbine Engines,&rdquo; '''ASME J. Turbomachinery''', Vol. 113, pp. 509 &ndash; 537.


Menter, F. R., (1992), “Improved Two-Equation k–-[[Image:U2-04d32_files_image029.gif]]NASA TM 103975.
Menter, F. R., (1992), &ldquo;Improved Two-Equation k&ndash;[[Image:U2-04d32_files_image029.gif]]NASA TM 103975.


Schmidt, R. C., and Patankar, S. V., (1991), “Simulating Boundary Layer Transition with Low-Reynolds-Number k–-[[Image:U2-04d32_files_image030.gif]] Turbulence Models. I - An Evaluation of Prediction Characteristics. II - An Approach to Improving the Predictions,” '''ASME J. Turbomachinery''', Vol. 113, pp. 10-26.
Schmidt, R. C., and Patankar, S. V., (1991), &ldquo;Simulating Boundary Layer Transition with Low-Reynolds-Number k&ndash;[[Image:U2-04d32_files_image030.gif]] Turbulence Models. I - An Evaluation of Prediction Characteristics. II - An Approach to Improving the Predictions,&rdquo; '''ASME J. Turbomachinery''', Vol. 113, pp. 10-26.


Shreeve, R. P., Elazar, Y., Dreon, J. W., and Baydar, A., (1991), “Wake Measurements and Loss Evaluation in a Controlled Diffusion Cascade,” '''ASME J. Turbomachinery''', Vol. 113, pp. 591-599.
Shreeve, R. P., Elazar, Y., Dreon, J. W., and Baydar, A., (1991), &ldquo;Wake Measurements and Loss Evaluation in a Controlled Diffusion Cascade,&rdquo; '''ASME J. Turbomachinery''', Vol. 113, pp. 591-599.


Steelant, J., and Dick, E., (1996), “Modelling of Bypass Transition with Conditioned Navier-Stokes Equations Coupled to an Intermittency Transport Equation,” '''Int. J. Num. Methods Fluids''', Vol. 23, pp. 193–220.
Steelant, J., and Dick, E., (1996), &ldquo;Modelling of Bypass Transition with Conditioned Navier-Stokes Equations Coupled to an Intermittency Transport Equation,&rdquo; '''Int. J. Num. Methods Fluids''', Vol. 23, pp. 193 &ndash; 220.


Suzen, Y. B., and Huang, P. G., (2000), “Modelling of Flow Transition Using an Intermittency Transport Equation,” '''ASME J. Fluids Engineering''', Vol. 122, pp.273-284.
Suzen, Y. B., and Huang, P. G., (2000), &ldquo;Modelling of Flow Transition Using an Intermittency Transport Equation,&rdquo; '''ASME J. Fluids Engineering''', Vol. 122, pp.273-284.


Tselepidakis, D. P., (1996), “Modelling and Prediction of the Laminar Leading-Edge Separation and Transition in a Blade-Cascade Flow,” '''''ASME Paper 96-GT-411'''''.
Tselepidakis, D. P., (1996), &ldquo;Modelling and Prediction of the Laminar Leading-Edge Separation and Transition in a Blade-Cascade Flow,&rdquo; '''''ASME Paper 96-GT-411'''''.


Zierke, W. C., and Deutsch, S., (1989), ‘The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 4 - Flow Fields for Incidence Angles of -1.5 and -8.5 Degrees,’ '''ASME Paper 89-GT-71''', also '''ASME J. Turbomachinery''', Vol. 112, pp. 241-255 (1990).
Zierke, W. C., and Deutsch, S., (1989), &lsquo;The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 4 - Flow Fields for Incidence Angles of -1.5 and -8.5 Degrees,&rsquo; '''ASME Paper 89-GT-71''', also '''ASME J. Turbomachinery''', Vol. 112, pp. 241-255 (1990).


Wilcox, D. C., (1994), “Simulation of Transition with a Two-Equation Turbulence Model,” '''AIAA J.''', Vol. 32, p. 247.
Wilcox, D. C., (1994), &ldquo;Simulation of Transition with a Two-Equation Turbulence Model,&rdquo; '''AIAA J.''', Vol. 32, p. 247.


<br style="page-break-before: always" clear="all" />
<br style="page-break-before: always" clear="all" />
Line 63: Line 62:
   
   


<span id="fig1"></span>
{| style="border-collapse: collapse"
{| style="border-collapse: collapse"
| style="width: 506.4pt; padding: 0cm 5.4pt 0cm 5.4pt" width="675" valign="top" |
| style="width: 506.4pt; padding: 0cm 5.4pt 0cm 5.4pt" width="675" valign="top" |
Line 74: Line 74:


   
   
 
<span id="fig2"></span><span id="fig3"></span>
{| style="border-collapse: collapse"
{| style="border-collapse: collapse"
| style="width: 253.2pt; padding: 0cm 5.4pt 0cm 5.4pt" width="338" valign="top" |
| style="width: 253.2pt; padding: 0cm 5.4pt 0cm 5.4pt" width="338" valign="top" |
Line 119: Line 119:
   
   


<span id="fig5"></span>
{| style="border-collapse: collapse"
{| style="border-collapse: collapse"
| style="width: 253.2pt; padding: 0cm 5.4pt 0cm 5.4pt" width="338" valign="top" |
| style="width: 253.2pt; padding: 0cm 5.4pt 0cm 5.4pt" width="338" valign="top" |
Line 197: Line 198:
<center>[[Image:U2-04d32_files_image070.jpg]]</center>
<center>[[Image:U2-04d32_files_image070.jpg]]</center>


<span id="fig10"></span>
<center> </center>
<center> </center>
|- style="height: 179.1pt"
|- style="height: 179.1pt"
Line 225: Line 227:


{{UFR|front=UFR 2-04|description=UFR 2-04 Description|references=UFR 2-04 References|testcase=UFR 2-04 Test Case|evaluation=UFR 2-04 Evaluation|qualityreview=UFR 2-04 Quality Review|bestpractice=UFR 2-04 Best Practice Advice|relatedACs=UFR 2-04 Related ACs}}
{{UFR|front=UFR 2-04|description=UFR 2-04 Description|references=UFR 2-04 References|testcase=UFR 2-04 Test Case|evaluation=UFR 2-04 Evaluation|qualityreview=UFR 2-04 Quality Review|bestpractice=UFR 2-04 Best Practice Advice|relatedACs=UFR 2-04 Related ACs}}
[[Category:Underlying Flow Regime]]

Latest revision as of 19:40, 11 February 2017

Front Page

Description

Test Case Studies

Evaluation

Best Practice Advice

References




Flow around (airfoils and) blades (subsonic)

Underlying Flow Regime 2-04               © copyright ERCOFTAC 2004


References

Biswas D., and Fukuyama, Y., (1994), “Calculation of Transitional Boundary Layers with an Improved Low-Reynolds-Number Version of k–ε Turbulence Model,” ASME J. Turbomachinery, Vol. 116, pp. 765-773.

Biswas D., Iwasaki, H., and Ishizuka, M., (1997), “Numerical Analysis of Two-Dimensional Compressible Viscous Flow in Turbomachinery Cascades Using an Improved k-ε Turbulence Model”, ASME Paper 97-GT-417.

Craft, T. J., Launder, B. E., and Suga, K., (1993), “Extending the Applicability of Eddy viscosity Models through the Use of Deformation Invariants and Non-Linear Elements,” Proc. 5th Int. Symp. Refined Flow Modelling and Turbulent Measurements, p. 125.

Deutsch, S., and Zierke, W. C., (1987), “The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 1 - A Unique Experimental Facility,” ASME Paper 87-GT-248.

Deutsch, S., and Zierke, W. C., (1987), “The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 2 - Suction Surface Boundary Layers,” ASME Paper 87-GT-249.

Deutsch, S., and Zierke, W. C., (1987), “The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 3 - Pressure Surface Boundary Layers and the Near Wake,” ASME Paper 87-GT-250.

Elazar, Y., and Shreeve, R. P., (1990), “Viscous Flow in a Controlled Diffusion Compressor Cascade With Increasing Incidence,” ASME J. Turbomachinery, Vol. 112, pp. 256-266.

Emmons, H. W., (1951), “The Laminar-Turbulent Transition in a Boundary Layer — Part I,” J. Aerospace Science, Vol. 18, No. 7, pp. 490-498.

Kang, S.-H., Lik, J. S., Choi M.-R., and Kim, K.-Y., (1995), “Numerical Calculations of the Turbulent Flow Through a Controlled Diffusion Compressor Cascade,” ASME J. Turbomachinery, Vol. 117, pp. 223-230.

Launder, B. E., and Sharma, B. I., (1974), “Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flows Near a Spinning Disk,” Letters Heat Mass Transfer, Vol. 1, pp. 131-138.

Leonard, B. P., (1979), “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,” Comp. Meth. Applied Mech. Engineering, Vol. 19, pp. 59-98.

Lien, F. S., Chen, W. L., and Leschziner, M. A., (1996), “A Multiblock Implementation of a Non-Orthogonal, Collocated Finite Volume Algorithm for Complex Turbulent Flows,” Int. J. Num. Methods Fluids, Vol. 23, pp. 567-588.

Lien, F. S., and Leschziner, M. A., (1993), “Computational Modelling of 3D Turbulent flow in S-Diffuser and Transition Ducts,” Letters Heat Mass Transfer, Vol. 131.

Mayle, R. E., (1991), “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomachinery, Vol. 113, pp. 509 – 537.

Menter, F. R., (1992), “Improved Two-Equation k–U2-04d32 files image029.gifNASA TM 103975.

Schmidt, R. C., and Patankar, S. V., (1991), “Simulating Boundary Layer Transition with Low-Reynolds-Number k–U2-04d32 files image030.gif Turbulence Models. I - An Evaluation of Prediction Characteristics. II - An Approach to Improving the Predictions,” ASME J. Turbomachinery, Vol. 113, pp. 10-26.

Shreeve, R. P., Elazar, Y., Dreon, J. W., and Baydar, A., (1991), “Wake Measurements and Loss Evaluation in a Controlled Diffusion Cascade,” ASME J. Turbomachinery, Vol. 113, pp. 591-599.

Steelant, J., and Dick, E., (1996), “Modelling of Bypass Transition with Conditioned Navier-Stokes Equations Coupled to an Intermittency Transport Equation,” Int. J. Num. Methods Fluids, Vol. 23, pp. 193 – 220.

Suzen, Y. B., and Huang, P. G., (2000), “Modelling of Flow Transition Using an Intermittency Transport Equation,” ASME J. Fluids Engineering, Vol. 122, pp.273-284.

Tselepidakis, D. P., (1996), “Modelling and Prediction of the Laminar Leading-Edge Separation and Transition in a Blade-Cascade Flow,” ASME Paper 96-GT-411.

Zierke, W. C., and Deutsch, S., (1989), ‘The Measurement of Boundary Layers on a Compressor Blade in Cascade: Part 4 - Flow Fields for Incidence Angles of -1.5 and -8.5 Degrees,’ ASME Paper 89-GT-71, also ASME J. Turbomachinery, Vol. 112, pp. 241-255 (1990).

Wilcox, D. C., (1994), “Simulation of Transition with a Two-Equation Turbulence Model,” AIAA J., Vol. 32, p. 247.



U2-04d32 files image032.jpg
Figure 1: Viscous flow features in a compressor cascade (from Elazar and Shreeve, 1990).



U2-04d32 files image034.jpg
U2-04d32 files image036.jpg

Figure 2: Schematic of the cascade wind tunnel (from Elazar and Shreeve, 1990).

Figure 3: Cascade passage geometry and LDV measuring stations (from Elazar and Shreeve, 1990).





U2-04d32 files image038.jpg
U2-04d32 files image040.jpg
U2-04d32 files image042.jpg

Figure 4: Alternative grid arrangements used by Lien et al. (1996).
Upper: H-type grid (in either single block or multi-block arrangements).
Middle: H-/O-type multi-block grid arrangement.
Lower: Details of the two grids in the leading edge region.





U2-04d32 files image044.jpg
U2-04d32 files image046.jpg
U2-04d32 files image048.jpg
U2-04d32 files image050.jpg

Figure 5: Pressure coefficient distributions along the blade chord. Clock-wise from upper right: Lien et al. (1996), Tselepidakis (1996), Biswas et al. (1997) and Kang et al. (1995).




U2-04d32 files image052.jpg
U2-04d32 files image054.jpg

Figure 6: Stream function contours at the leading edge. Right: Tselepidakis (1996), left: Kang et al. (1995).


U2-04d32 files image056.jpg
U2-04d32 files image058.jpg

Figure 7: Pressure loss coefficient (left) and exit flow angle (right) distributions (from Kang et al., 1995).


U2-04d32 files image060.jpg

Figure 8: Boundary layer parameters distributions. Left: Boundary layer thickness. Middle: Displacement thickness. Right: Momentum thickness (from Lien et al., 1996).


U2-04d32 files image062.jpg
U2-04d32 files image064.jpg
U2-04d32 files image066.jpg

Figure 9: Left: Boundary layer shape factor. Middle: Downstream wake velocity distribution. Right: Variation of minimum velocity with distance (from Biswas et al., 1997).


U2-04d32 files image068.jpg
U2-04d32 files image070.jpg

U2-04d32 files image072.jpg
U2-04d32 files image074.jpg

Figure 10: Stream velocity (left) and turbulence intensity (right) profiles on suction side (from Tselepidakis, 1996).


© copyright ERCOFTAC 2004