Test Data AC3-10: Difference between revisions

From KBwiki
Jump to navigation Jump to search
(New page: ='''Combining/dividing flow in Y junction'''= '''Application Challenge 3-10''' © copyright ERCOFTAC 2004 =='''Overview of Tests'''== Experimental investigations of the ...)
 
m (Dave.Ellacott moved page Silver:Test Data AC3-10 to Test Data AC3-10 over redirect)
 
(12 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{AC|front=AC 3-10|description=Description_AC3-10|testdata=Test Data_AC3-10|cfdsimulations=CFD Simulations_AC3-10|evaluation=Evaluation_AC3-10|qualityreview=Quality Review_AC3-10|bestpractice=Best Practice Advice_AC3-10|relatedUFRs=Related UFRs_AC3-10}}
='''Combining/dividing flow in Y junction'''=
='''Combining/dividing flow in Y junction'''=


Line 7: Line 9:
=='''Overview of Tests'''==
=='''Overview of Tests'''==


Experimental investigations of the flow in a ‘Y’ junction with an included angle of 50 degrees were carried out, with various distributions of flow in the minor branches, under both converging and diverging situations. The flow rates through the main branch were chosen to give nominal Reynolds numbers of (5, 7, 9 and 12) x 105.
Experimental investigations of the flow in a ‘Y’ junction with an included angle of 50 degrees were carried out, with various distributions of flow in the minor branches, under both converging and diverging situations. The flow rates through the main branch were chosen to give nominal Reynolds numbers of (5, 7, 9 and 12) x <math>10^{5}</math>.


   
   
Line 41: Line 43:
   
   


Branch 1 (D1) = 72.3 mm
Branch 1 <math>{(D_{1})}</math> = 72.3 mm


Branch 2 (D2) = 54.4 mm
Branch 2 <math>{(D_{2})}</math> = 54.4 mm


Branch 3 (D3) = 54.4 mm
Branch 3 <math>{(D_{3})}</math> = 54.4 mm


   
   
Line 53: Line 55:
   
   


G = K dn hm (4)
<math>G = \Kappa d^{n} h^{m}</math> (4)


   
   
Line 59: Line 61:
Where G = flow rate (litres/sec)
Where G = flow rate (litres/sec)


K = 4.5 x 10-4
K = 4.5 x <math>10^{-4}</math>


d = internal diameter of pipe (mm)
d = internal diameter of pipe (mm)
Line 75: Line 77:
   
   


From Reference 2, the junction head loss coefficient ki,j for both convergent and divergent flows is defined as the ratio of the total head loss between branches i and j to the mean velocity head in the branch carrying the total flow. Hence, in this report, taking into account the pressure losses between the tapping planes and the eye of the junction, the following equations have been used:
From Reference 2, the junction head loss coefficient <math>k_{ij}</math> for both convergent and divergent flows is defined as the ratio of the total head loss between branches i and j to the mean velocity head in the branch carrying the total flow. Hence, in this report, taking into account the pressure losses between the tapping planes and the eye of the junction, the following equations have been used:


   
   
Line 83: Line 85:
   
   


k2,1 = (ωP2,1 + ½ ωw v22 – ½ rw v12 – h1 – h2 ) / (½ rw v12) (5)
<math>k_{2,1} = {(\Delta P_{2,1} + 1/2 \rho_{w}V_{2}^{2} - 1/2 \rho_{w}V_{1}^{2} - h_{1} - h_{2})} / {(1/2 \rho_{w}V_{1}^{2})}</math> (5)
 


k3,1 = (ωP3,1 + ½ ωw v32 – ½ rw v12 – h1 – h3 ) / (½ rw v12) (6)
<math>k_{3,1} = {(\Delta P_{3,1} + 1/2 \rho_{w}V_{3}^{2} - 1/2 \rho_{w}V_{1}^{2} - h_{1} - h_{3})} / {(1/2 \rho_{w}V_{1}^{2})}</math> (6)


   
   
Line 95: Line 98:
   
   


k1,2 = (ωP1,2 + ½ ωw v12 – ½ rw v22 – h1 – h2 ) / (½ rw v12) (7)
<math>k_{1,2} = {(\Delta P_{1,2} + 1/2 \rho_{w}V_{1}^{2} - 1/2 \rho_{w}V_{2}^{2} - h_{1} - h_{2})} / {(1/2 \rho_{w}V_{1}^{2})}</math> (7)
 


k1,3 = (ωP1,3 + ½ ωw v12 – ½ rw v32 – h1 – h3 ) / (½ rw v12) (8)
<math>k_{1,3} = {(\Delta P_{1,3} + 1/2 \rho_{w}V_{1}^{2} - 1/2 \rho_{w}V_{3}^{2} - h_{1} - h_{3})} / {(1/2 \rho_{w}V_{1}^{2})}</math> (8)




Line 106: Line 110:
   
   


Table 1 Convergent flow, nominal ReD = 5 x 105
Table 1 Convergent flow, nominal <math>Re_{D} = 5 x 10^{5}</math>
 
Table 2 Convergent flow, nominal <math>Re_{D} = 7 x 10^{5}</math>


Table 2 Convergent flow, nominal ReD = 7 x 105
Table 3 Convergent flow, nominal <math>Re_{D} = 9 x 10^{5}</math>


Table 3 Convergent flow, nominal ReD = 9 x 105
Table 4 Convergent flow, nominal <math>Re_{D} = 1.2 x 10^{6}</math>


Table 4 Convergent flow, nominal ReD = 1.2 x 106
Table 5 Divergent flow, nominal <math>Re_{D} = 5 x 10^{5}</math>


Table 5 Divergent flow, nominal ReD = 5 x 105
Table 6 Divergent flow, nominal <math>Re_{D} = 7 x 10^{5}</math>


Table 6 Divergent flow, nominal ReD = 7 x 105
Table 7 Divergent flow, nominal <math>Re_{D} = 9 x 10^{5}</math>


Table 7 Divergent flow, nominal ReD = 9 x 105
Table 8 Divergent flow, nominal <math>Re_{D} = 1.2 x 10^{6}</math>


Table 8 Divergent flow, nominal ReD = 1.2 x 106


   
   
Line 136: Line 141:
=='''Nomenclature'''==
=='''Nomenclature'''==


D1, D2, D3 Internal diameters of pipe branches 1, 2 and 3 m
<math>D_{1},D_{2},D_{3}</math> Internal diameters of pipe branches 1, 2 and 3 m


h1, h2, h3 Pressure losses for lengths of pipe between the tapping
<math>h_{1},h_{2},h_{3}</math> Pressure losses for lengths of pipe between the tapping


planes and ‘eye’ of junction for branches 1, 2 and 3 mbar
planes and ‘eye’ of junction for branches 1, 2 and 3 mbar


k1,2 Head loss coefficient between branches 1 and 2 for divergent test -
<math>k_{1,2}</math> Head loss coefficient between branches 1 and 2 for divergent test -


k1,3 Head loss coefficient between branches 1 and 3 for divergent test -
<math>k_{1,3}</math> Head loss coefficient between branches 1 and 3 for divergent test -


k2,1 Head loss coefficient between branches 2 and 1 for convergent test -
<math>k_{2,1}</math> Head loss coefficient between branches 2 and 1 for convergent test -


k3,1 Head loss coefficient between branches 3 and 1 for convergent test -
<math>k_{3,1}</math> Head loss coefficient between branches 3 and 1 for convergent test -


P Absolute pressure Pa
P Absolute pressure Pa


Dp1,2 Pressure difference between branches 1 and 2 for divergent test mbar
<math>\Delta P_{1,2}</math> Pressure difference between branches 1 and 2 for divergent test mbar


Dp1,3 Pressure difference between branches 1 and 3 for divergent test mbar
<math>\Delta P_{1,3}</math> Pressure difference between branches 1 and 3 for divergent test mbar


Dp2,1 Pressure difference between branches 2 and 1 for convergent test mbar
<math>\Delta P_{2,1}</math> Pressure difference between branches 2 and 1 for convergent test mbar


Dp3,1 Pressure difference between branches 3 and 1 for convergent test mbar
<math>\Delta P_{3,1}</math> Pressure difference between branches 3 and 1 for convergent test mbar


Q1, Q2, Q3 Flow rates through branches 1, 2 and 3 litre/s
<math>Q_{1},Q_{2},Q_{3}</math> Flow rates through branches 1, 2 and 3 litre/s


ReD Reynolds number, based on diameter of branch 1 -
<math>Re_{D}</math> Reynolds number, based on diameter of branch 1 -


t Temperature of water °C
t Temperature of water °C


v1, v2, v3 Mean velocities in branches 1, 2 and 3 m/s
<math>V_{1},V_{2},V_{3}</math> Mean velocities in branches 1, 2 and 3 m/s


ωw Dynamic viscosity of water Pa s
<math>\mu_{w}</math> Dynamic viscosity of water Pa s


ω w Density of water kg/m3
<math>\rho_{w}</math> Density of water kg/m3


   
   
Line 182: Line 187:
Site Design and Implementation: [[Atkins]] and [[UniS]]
Site Design and Implementation: [[Atkins]] and [[UniS]]
        Top              Next
{{AC|front=AC 3-10|description=Description_AC3-10|testdata=Test Data_AC3-10|cfdsimulations=CFD Simulations_AC3-10|evaluation=Evaluation_AC3-10|qualityreview=Quality Review_AC3-10|bestpractice=Best Practice Advice_AC3-10|relatedUFRs=Related UFRs_AC3-10}}

Latest revision as of 16:12, 11 February 2017

Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice

Combining/dividing flow in Y junction

Application Challenge 3-10 © copyright ERCOFTAC 2004


Overview of Tests

Experimental investigations of the flow in a ‘Y’ junction with an included angle of 50 degrees were carried out, with various distributions of flow in the minor branches, under both converging and diverging situations. The flow rates through the main branch were chosen to give nominal Reynolds numbers of (5, 7, 9 and 12) x .


Schematic diagrams of the rig arrangement for convergent and divergent tests are shown in Figures 1 and 2 respectively. Figures 3 and 4 are photographs showing the ‘Y’ junction in the convergent arrangement. The ‘Y’ junction was manufactured from Perspex, and its internal geometry is shown in Figure 5.


Each tapping plane had 4 equispaced taps around the circumference and these were connected via a ‘triple-tee’ piezometer ring (Reference 1) to an Orkney differential piston manometer. This presented an average of the pressures at the individual tappings in each plane to the manometer. The connections into the manometer were valved such that the pressures into the high and low sides of the manometer could be reversed, thus allowing the measurement of ‘negative’ differential pressures which arose at certain flow rate ratios through the branches.


Water was pumped from a sump to a constant-head tank, from which it entered the suction side of a 34 bar, 335 kW (450 hp) pump. The water then discharged into a 6-inch diameter high-pressure line containing a ‘T-section’. One arm of this section led to the test-line containing the ‘Y’ junction pipework arrangement and the other acted as a bypass line to the sump. Initial flow rates and pressures were set by adjusting two matched globe valves on the arms of this ‘T-section’. Finer control of the flow rates through the two branches was achieved using the 3-inch NB valves shown in Figures 1 and 2. In the case of the converging tests, a further valve at the downstream end of the test section was also used, to ensure enough back pressure to prevent cavitation.


3-inch turbine meters were installed in branches 2 and 3 to measure the flow rates, and a third 6-inch NB turbine meter was installed upstream of the installation to ease the setting up of the flow in branch 1. Prior to installation, these turbine meters were calibrated to give mean meter factors (and hence flow rates) with an uncertainty within 0.25 per cent for the 3-inch turbine meters and 0.4 per cent for the 6-inch meter over the required flow ranges.





Most of the pipework, and in particular the pipes adjacent to the ‘Y’ junction containing the tapping planes, were made of thermoplastic having smooth internal surfaces.


The internal diameters of the pipes adjacent to the ‘Y’ junction were supplied by Durapipe Ltd, the pipe manufacturers, and were as follows:


Branch 1 = 72.3 mm

Branch 2 = 54.4 mm

Branch 3 = 54.4 mm


The following equation, given by the manufacturers, which is based on the modified Lamont S3 formula, was used to calculate the pressure losses between the tapping planes and the eye of the ‘Y’ junction for each branch:


(4)


Where G = flow rate (litres/sec)

K = 4.5 x

d = internal diameter of pipe (mm)

h = pressure loss (m head of water/m length of pipe)

n = 2.6935

m = 0.5645


The distance from the tapping plane to the eye of the ‘Y’ junction for all branches was 0.457 m (18 inches). Hence the values of h from equation (5) were multiplied by 44.82 to convert the pressure loss to mbar for the 0.457 metre lengths.


From Reference 2, the junction head loss coefficient for both convergent and divergent flows is defined as the ratio of the total head loss between branches i and j to the mean velocity head in the branch carrying the total flow. Hence, in this report, taking into account the pressure losses between the tapping planes and the eye of the junction, the following equations have been used:


For convergent tests:


(5)


(6)



For divergent tests:


(7)


(8)


Test Cases

All the results are given in Tables 1 to 8, as listed below:


Table 1 Convergent flow, nominal

Table 2 Convergent flow, nominal

Table 3 Convergent flow, nominal

Table 4 Convergent flow, nominal

Table 5 Divergent flow, nominal

Table 6 Divergent flow, nominal

Table 7 Divergent flow, nominal

Table 8 Divergent flow, nominal



At certain flow ratios, it was apparent that pressures within the ‘Y’ junction were giving rise to ‘negative’ differential pressures, as indicated by the minus signs in the Tables.


References

1. Blake, K. A. The design of piezometer rings. J. Fluid Mech., 1976, 78(2), pp 415-428

2. Miller, D. S. Internal Flow Systems. Published by BHRA Fluid Engineering, 1978, Ch. 13.


Nomenclature

Internal diameters of pipe branches 1, 2 and 3 m

Pressure losses for lengths of pipe between the tapping

planes and ‘eye’ of junction for branches 1, 2 and 3 mbar

Head loss coefficient between branches 1 and 2 for divergent test -

Head loss coefficient between branches 1 and 3 for divergent test -

Head loss coefficient between branches 2 and 1 for convergent test -

Head loss coefficient between branches 3 and 1 for convergent test -

P Absolute pressure Pa

Pressure difference between branches 1 and 2 for divergent test mbar

Pressure difference between branches 1 and 3 for divergent test mbar

Pressure difference between branches 2 and 1 for convergent test mbar

Pressure difference between branches 3 and 1 for convergent test mbar

Flow rates through branches 1, 2 and 3 litre/s

Reynolds number, based on diameter of branch 1 -

t Temperature of water °C

Mean velocities in branches 1, 2 and 3 m/s

Dynamic viscosity of water Pa s

Density of water kg/m3


© copyright ERCOFTAC 2004


Contributors: Alan Stevens - Rolls-Royce Marine Power, Engineering & Technology Division

Site Design and Implementation: Atkins and UniS


Front Page

Description

Test Data

CFD Simulations

Evaluation

Best Practice Advice