https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&feed=atom&action=history Test Data AC2-12 - Revision history 2024-03-29T10:16:29Z Revision history for this page on the wiki MediaWiki 1.39.2 https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=37049&oldid=prev Dave.Ellacott: Dave.Ellacott moved page Lib:Test Data AC2-12 to Test Data AC2-12 over redirect 2019-08-16T11:15:15Z <p>Dave.Ellacott moved page <a href="/w/index.php/Lib:Test_Data_AC2-12" class="mw-redirect" title="Lib:Test Data AC2-12">Lib:Test Data AC2-12</a> to <a href="/w/index.php/Test_Data_AC2-12" title="Test Data AC2-12">Test Data AC2-12</a> over redirect</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <tr class="diff-title" lang="en"> <td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 11:15, 16 August 2019</td> </tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div> </td></tr></table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36927&oldid=prev Dave.Ellacott: /* Alternative/Additional experimental data */ 2019-06-05T12:40:57Z <p><span dir="auto"><span class="autocomment">Alternative/Additional experimental data</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:40, 5 June 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l133">Line 133:</td> <td colspan="2" class="diff-lineno">Line 133:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"></ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12#5|[5]]]</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12#5|[5]]]</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.</div></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36926&oldid=prev Dave.Ellacott: /* Gas analysis and instrumentation */ 2019-06-05T12:39:04Z <p><span dir="auto"><span class="autocomment">Gas analysis and instrumentation</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:39, 5 June 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l40">Line 40:</td> <td colspan="2" class="diff-lineno">Line 40:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>0.04&amp;nbsp;&amp;ndash;&amp;nbsp;0.2 and a Reynolds number range, based on the hydraulic diameter of the combustor, of</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>0.04&amp;nbsp;&amp;ndash;&amp;nbsp;0.2 and a Reynolds number range, based on the hydraulic diameter of the combustor, of</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>10,000&amp;nbsp;&amp;ndash;&amp;nbsp;50,000.  The selected conditions for the gas analysis tests are shown in [[Test_Data_AC2-12#table2|Table&amp;nbsp;2]].</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>10,000&amp;nbsp;&amp;ndash;&amp;nbsp;50,000.  The selected conditions for the gas analysis tests are shown in [[Test_Data_AC2-12#table2|Table&amp;nbsp;2]].</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;"></ins></div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>All tests were conducted with non-vitiated air. Propane, 98% pure, was used as fuel. To reduce the risk of leakage at the quartz windows, the tests were always conducted slightly below ambient pressure. The turbulence level just upstream of the bluff-body was kept at an approximate level of 3-4%, as verified by the LDA-measurements. The selected combustor geometry is prone to combustion oscillations. However, the equivalence ratio for the gas analysis tests were chosen so that the RMS value of the dynamic pressure fluctuations were below 1% of the absolute pressure level.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>All tests were conducted with non-vitiated air. Propane, 98% pure, was used as fuel. To reduce the risk of leakage at the quartz windows, the tests were always conducted slightly below ambient pressure. The turbulence level just upstream of the bluff-body was kept at an approximate level of 3-4%, as verified by the LDA-measurements. The selected combustor geometry is prone to combustion oscillations. However, the equivalence ratio for the gas analysis tests were chosen so that the RMS value of the dynamic pressure fluctuations were below 1% of the absolute pressure level.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36924&oldid=prev Dave.Ellacott: /* Gas analysis and instrumentation */ 2019-06-05T12:31:58Z <p><span dir="auto"><span class="autocomment">Gas analysis and instrumentation</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:31, 5 June 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l35">Line 35:</td> <td colspan="2" class="diff-lineno">Line 35:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The combustor was run over the range conditions: combustion pressure 100 kPa, inlet temperature 288<del style="font-weight: bold; text-decoration: none;">-</del>700 K, air mass flow 0.6<del style="font-weight: bold; text-decoration: none;">-</del>1.8 kg/s and equivalence ratio 0<del style="font-weight: bold; text-decoration: none;">-</del>1.1.  These conditions yield an inlet Mach number range of 0.04<del style="font-weight: bold; text-decoration: none;">-</del>0.2 and a Reynolds number range, based on the hydraulic diameter of the combustor, of 10,000<del style="font-weight: bold; text-decoration: none;">-</del>50,000.  The selected conditions for the gas analysis tests are shown in [[Test_Data_AC2-12#table2|Table&amp;nbsp;2]].</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The combustor was run over the range conditions: combustion pressure 100<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>kPa, inlet temperature</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>288<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;&amp;ndash;&amp;nbsp;</ins>700<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>K, air mass flow 0.6<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;&amp;ndash;&amp;nbsp;</ins>1.8<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>kg/s and equivalence</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>ratio 0<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;&amp;ndash;&amp;nbsp;</ins>1.1.  These conditions yield an inlet Mach number range of</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>0.04<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;&amp;ndash;&amp;nbsp;</ins>0.2 and a Reynolds number range, based on the hydraulic diameter of the combustor, of</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>10,000<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;&amp;ndash;&amp;nbsp;</ins>50,000.  The selected conditions for the gas analysis tests are shown in [[Test_Data_AC2-12#table2|Table&amp;nbsp;2]].</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>All tests were conducted with non-vitiated air. Propane, 98% pure, was used as fuel. To reduce the risk of leakage at the quartz windows, the tests were always conducted slightly below ambient pressure. The turbulence level just upstream of the bluff-body was kept at an approximate level of 3-4%, as verified by the LDA-measurements. The selected combustor geometry is prone to combustion oscillations. However, the equivalence ratio for the gas analysis tests were chosen so that the RMS value of the dynamic pressure fluctuations were below 1% of the absolute pressure level.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>All tests were conducted with non-vitiated air. Propane, 98% pure, was used as fuel. To reduce the risk of leakage at the quartz windows, the tests were always conducted slightly below ambient pressure. The turbulence level just upstream of the bluff-body was kept at an approximate level of 3-4%, as verified by the LDA-measurements. The selected combustor geometry is prone to combustion oscillations. However, the equivalence ratio for the gas analysis tests were chosen so that the RMS value of the dynamic pressure fluctuations were below 1% of the absolute pressure level.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36800&oldid=prev Dave.Ellacott: /* Alternative/Additional experimental data */ 2019-05-30T18:18:26Z <p><span dir="auto"><span class="autocomment">Alternative/Additional experimental data</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:18, 30 May 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l133">Line 133:</td> <td colspan="2" class="diff-lineno">Line 133:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>(P&amp;nbsp;=&amp;nbsp;100&amp;nbsp;kPa, T&amp;nbsp;=&amp;nbsp;280&amp;nbsp;K, Re&amp;nbsp;=&amp;nbsp;17500 and M&amp;nbsp;=&amp;nbsp;0.03).</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>(P&amp;nbsp;=&amp;nbsp;100&amp;nbsp;kPa, T&amp;nbsp;=&amp;nbsp;280&amp;nbsp;K, Re&amp;nbsp;=&amp;nbsp;17500 and M&amp;nbsp;=&amp;nbsp;0.03).</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An equilateral (D&amp;nbsp;=&amp;nbsp;0.025&amp;nbsp;m) triangular rod was placed inside the channel passage of 0.05&amp;nbsp;m square cross-section. Nakagawa  [[Best_Practice_Advice_AC2-12|[8]]]</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An equilateral (D&amp;nbsp;=&amp;nbsp;0.025&amp;nbsp;m) triangular rod was placed inside the channel passage of 0.05&amp;nbsp;m square cross-section. Nakagawa  [[Best_Practice_Advice_AC2-12<ins style="font-weight: bold; text-decoration: none;">#8</ins>|[8]]]</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12|[9]]].</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12<ins style="font-weight: bold; text-decoration: none;">#9</ins>|[9]]].</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Sanquer ''et al.'' [[Best_Practice_Advice_AC2-12|[10]]] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Sanquer ''et al.'' [[Best_Practice_Advice_AC2-12<ins style="font-weight: bold; text-decoration: none;">#10</ins>|[10]]] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36799&oldid=prev Dave.Ellacott: /* Alternative/Additional experimental data */ 2019-05-30T18:17:46Z <p><span dir="auto"><span class="autocomment">Alternative/Additional experimental data</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:17, 30 May 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l133">Line 133:</td> <td colspan="2" class="diff-lineno">Line 133:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>(P&amp;nbsp;=&amp;nbsp;100&amp;nbsp;kPa, T&amp;nbsp;=&amp;nbsp;280&amp;nbsp;K, Re&amp;nbsp;=&amp;nbsp;17500 and M&amp;nbsp;=&amp;nbsp;0.03).</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>(P&amp;nbsp;=&amp;nbsp;100&amp;nbsp;kPa, T&amp;nbsp;=&amp;nbsp;280&amp;nbsp;K, Re&amp;nbsp;=&amp;nbsp;17500 and M&amp;nbsp;=&amp;nbsp;0.03).</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An equilateral (D<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>=<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>0.025<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>m) triangular rod was placed inside the channel passage of 0.05<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>m square cross-section. Nakagawa  <ins style="font-weight: bold; text-decoration: none;">[[Best_Practice_Advice_AC2-12|</ins>[8]<ins style="font-weight: bold; text-decoration: none;">]]</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno <ins style="font-weight: bold; text-decoration: none;">''</ins>et<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>al.<ins style="font-weight: bold; text-decoration: none;">'' [[Best_Practice_Advice_AC2-12|</ins>[9<ins style="font-weight: bold; text-decoration: none;">]]</ins>].</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Sanquer <ins style="font-weight: bold; text-decoration: none;">''</ins>et al.<ins style="font-weight: bold; text-decoration: none;">'' [[Best_Practice_Advice_AC2-12|</ins>[10<ins style="font-weight: bold; text-decoration: none;">]]</ins>] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36798&oldid=prev Dave.Ellacott: /* Alternative/Additional experimental data */ 2019-05-30T18:12:23Z <p><span dir="auto"><span class="autocomment">Alternative/Additional experimental data</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:12, 30 May 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l129">Line 129:</td> <td colspan="2" class="diff-lineno">Line 129:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12#5|[5]]]</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12#5|[5]]]</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes. <del style="font-weight: bold; text-decoration: none;"> </del>Fujii et al. [6,7] presented  LDV measurements (both inert and reactive), which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions (P = <del style="font-weight: bold; text-decoration: none;"> </del>100 kPa, T = 280 K, Re = 17500 and M = 0.03). <del style="font-weight: bold; text-decoration: none;"> </del>An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Fujii <ins style="font-weight: bold; text-decoration: none;">''</ins>et<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>al.<ins style="font-weight: bold; text-decoration: none;">'' [[Best_Practice_Advice_AC2-12#6|</ins>[6,7<ins style="font-weight: bold; text-decoration: none;">]]</ins>] presented  LDV measurements (both inert and reactive),</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>(P<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>=<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>100<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>kPa, T<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>=<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>280<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>K, Re<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>=<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>17500 and M<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>=<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>0.03).</div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36797&oldid=prev Dave.Ellacott: /* Alternative/Additional experimental data */ 2019-05-30T18:10:14Z <p><span dir="auto"><span class="autocomment">Alternative/Additional experimental data</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:10, 30 May 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l128">Line 128:</td> <td colspan="2" class="diff-lineno">Line 128:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12|[5]]]</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue ''et&amp;nbsp;al.'' [[Best_Practice_Advice_AC2-12<ins style="font-weight: bold; text-decoration: none;">#5</ins>|[5]]]</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.  Fujii et al. [6,7] presented  LDV measurements (both inert and reactive), which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions (P =  100 kPa, T = 280 K, Re = 17500 and M = 0.03).  An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.  Fujii et al. [6,7] presented  LDV measurements (both inert and reactive), which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions (P =  100 kPa, T = 280 K, Re = 17500 and M = 0.03).  An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36796&oldid=prev Dave.Ellacott: /* Alternative/Additional experimental data */ 2019-05-30T18:09:52Z <p><span dir="auto"><span class="autocomment">Alternative/Additional experimental data</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:09, 30 May 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l128">Line 128:</td> <td colspan="2" class="diff-lineno">Line 128:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[Best_Practice_Advice_AC2-12#1|[1,2,3]]].</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue et al. [5] presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.  Fujii et al. [6,7] presented  LDV measurements (both inert and reactive), which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions (P =  100 kPa, T = 280 K, Re = 17500 and M = 0.03).  An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue <ins style="font-weight: bold; text-decoration: none;">''</ins>et<ins style="font-weight: bold; text-decoration: none;">&amp;nbsp;</ins>al.<ins style="font-weight: bold; text-decoration: none;">'' [[Best_Practice_Advice_AC2-12|</ins>[5]<ins style="font-weight: bold; text-decoration: none;">]]</ins></div></td></tr> <tr><td colspan="2" class="diff-side-deleted"></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.  Fujii et al. [6,7] presented  LDV measurements (both inert and reactive), which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions (P =  100 kPa, T = 280 K, Re = 17500 and M = 0.03).  An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Data Files==</div></td></tr> </table> Dave.Ellacott https://kbwiki.ercoftac.org/w/index.php?title=Test_Data_AC2-12&diff=36795&oldid=prev Dave.Ellacott: /* Alternative/Additional experimental data */ 2019-05-30T18:08:45Z <p><span dir="auto"><span class="autocomment">Alternative/Additional experimental data</span></span></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Older revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:08, 30 May 2019</td> </tr><tr><td colspan="2" class="diff-lineno" id="mw-diff-left-l127">Line 127:</td> <td colspan="2" class="diff-lineno">Line 127:</td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Alternative/Additional experimental data==</div></td></tr> <tr><td class="diff-marker" data-marker="−"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[<del style="font-weight: bold; text-decoration: none;">Best_Practice_Advice</del>#1|[1,2,3]].</div></td><td class="diff-marker" data-marker="+"></td><td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is worth noting that several alternative experimental data exist in the literature, which can be used as alternative or/and accompanying data to the considered measured data [[<ins style="font-weight: bold; text-decoration: none;">Best_Practice_Advice_AC2-12</ins>#1|[1,2,3<ins style="font-weight: bold; text-decoration: none;">]</ins>]].</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue et al. [5] presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.  Fujii et al. [6,7] presented  LDV measurements (both inert and reactive), which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions (P =  100 kPa, T = 280 K, Re = 17500 and M = 0.03).  An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Shanbhogue et al. [5] presented a very useful review and experimental observations of the lean blowoff of bluff-body stabilized flames with a detailed description of instabilities in both inert and reactive wakes.  Fujii et al. [6,7] presented  LDV measurements (both inert and reactive), which were carried out in an open circuit, forced flow type of wind tunnel at ambient conditions (P =  100 kPa, T = 280 K, Re = 17500 and M = 0.03).  An equilateral (D = 0.025 m) triangular rod was placed inside the channel passage of 0.05 m square cross-section. Nakagawa  [8] presented an experimental  interferogram  useful to compare the flow visualization of the vortex shedding behind a triangular rod. Experimental data of the surface pressure coefficient distribution on the sides of a triangular rod can be retrieved from the work published by Tatsuno et al. [9]. Sanquer et al.[10] presented details of energy spectra in the turbulent non-reactive and reactive wakes of the bluff-body flow, including triangular and square cylinders.</div></td></tr> <tr><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td><td class="diff-marker"></td><td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br/></td></tr> </table> Dave.Ellacott