Test Data AC1-01: Difference between revisions

From KBwiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
=='''Overview of Tests'''==
=='''Overview of Tests'''==


The experimental conditions are described in [[TR-026-20.pdf]]. The full range of tests covers a variety of free-stream Mach numbers between 0.4 and 1.35, and for two cavity configurations, so-called shallow and deep. We concentrate here on a single one of these, namely '''M=0.85 deep cavity'''.
The experimental conditions are described in [[Media:TR-026-20.pdf]]. The full range of tests covers a variety of free-stream Mach numbers between 0.4 and 1.35, and for two cavity configurations, so-called shallow and deep. We concentrate here on a single one of these, namely '''M=0.85 deep cavity'''.


Unsteady pressure measurements were recorded by 10 Kulite transducers along the centreline of the rig (which did not coincide with the centreline of the cavity itself), at a sampling rate of 6000Hz. The position of each transducer is given in Table 1.
Unsteady pressure measurements were recorded by 10 Kulite transducers along the centreline of the rig (which did not coincide with the centreline of the cavity itself), at a sampling rate of 6000Hz. The position of each transducer is given in Table 1.
Line 109: Line 109:
         Top              Next
         Top              Next
[[Media:Example.ogg]]

Revision as of 12:47, 1 September 2008

Aero-acoustic cavity

Application Challenge 1-01 © copyright ERCOFTAC 2004


Overview of Tests

The experimental conditions are described in Media:TR-026-20.pdf. The full range of tests covers a variety of free-stream Mach numbers between 0.4 and 1.35, and for two cavity configurations, so-called shallow and deep. We concentrate here on a single one of these, namely M=0.85 deep cavity.

Unsteady pressure measurements were recorded by 10 Kulite transducers along the centreline of the rig (which did not coincide with the centreline of the cavity itself), at a sampling rate of 6000Hz. The position of each transducer is given in Table 1.


Transducer Number


Distance X from leading edge of cavity

(mm)

1


25.4

2


76.2

3


127.0

4


177.8

5


228.6

6


279.4

7


330.2

8


381.0

9


431.8

10


482.6


Table 1. Kulite Transducer Positions


M219D085.dat for the 10 transducer locations are stored using a sampling frequency of 6000 per second, for a total duration of just over 3.4 seconds. The M219DRMS.dat at these locations are also presented.

There is no independent verification of the validity/accuracy of the experimental data.

Test Conditions

Measurements have been performed on a range of free-stream Mach number, (empty) cavity depths, with and without doors at 90o open (TR-026-20.pdf reports on the latter only). If appropriate, during the duration of the QNET project, a matrix of alternative test conditions against which to benchmark CFD calculations will be provided.

The specific test case of interest is classed as a deep cavity (L/D = 5) without doors, with flow conditions as follows:

M = 0.85

Re = 6.84e6 (based on cavity length of 0.508m)

P0 = 99612.06 Pa

P = 62059.14 Pa

T0 = 305.06 K

Incidence = 0o

References

TR-026-20.pdf Henshaw M.J de C., “M219 Cavity case in Verification and Validation Data for Computational Unsteady Aerodynamics”, RTO-TR-26, AC/323(AVT)TP/19, October 2000 © copyright ERCOFTAC 2004


Contributors: Fred Mendonca; Richard Allen - Computational Dynamics Ltd

Site Design and Implementation: Atkins and UniS

       Top        	      Next

Media:Example.ogg