UFR Index
Jump to navigation
Jump to search
Flow Type | UFR number | Underlying Flow Regime | Contributor | Organisation |
---|---|---|---|---|
Free Flows | ||||
1-01 | Underexpanded jet | Christopher Lea | UK Health and Safety Laboratory | |
1-02 | Blade tip and tip clearance vortex flow | Michael Casey | Sulzer Innotec AG | |
1-05 | Jet in a Cross Flow | Peter Storey | ABB Alstom Power UK | |
1-06 | Axisymmetric buoyant far-field plume | Simon Gant | UK Health & Safety Laboratory | |
1-07 | Unsteady near-field plume | Simon Gant | UK Health & Safety Laboratory | |
Flows around Bodies | ||||
2-01 | Flow behind a blunt trailing edge | Charles Hirsch | Vrije Universiteit Brussel | |
2-02 | Flow past cylinder | Wolfgang Rodi | Universität Karlsruhe | |
2-03 | Flow around oscillating airfoil | Joanna Szmelter | Cranfield University | |
2-04 | Flow around (airfoils and) blades (subsonic) | K. Papailiou | NTUA | |
2-05 | Flow around airfoils (and blades) A-airfoil (Ma=0.15, Re/m=2x10^6) | Peter Voke | University of Surrey | |
2-06 | Flow around (airfoils and) blades (transonic) | Jaromir Prihoda | Czech Academy of Sciences | |
2-07 | 3D flow around blades | Dirk Wilhelm | ALSTOM Power (Switzerland) Ltd | |
2-10 | Flow Around Finite-Height Circular Cylinder | G. Palau-Salvador, W. Rodi | Universidad Politecnica de Valencia, Karlsruhe Institute of Technology | |
2-11 | High Reynolds Number Flow around Airfoil in Deep Stall | Charles Mockett | CFD Software GmbH and Technische Universitaet Berlin | |
Michael Strelets | New Technologies and Services LLC (NTS) and St.-Petersburg State Polytechnic University | |||
2-12 | Turbulent Flow Past Two-Body Configurations | A. Garbaruk, M. Shur and M. Strelets | New Technologies and Services LLC (NTS) and St.-Petersburg State Polytechnic University | |
2-13 | Fluid-structure interaction in turbulent flow past cylinder/plate configuration I (First swiveling mode) | Michael Breuer | Helmut-Schmidt Universität Hamburg | |
2-14 | Fluid-structure interaction in turbulent flow past cylinder/plate configuration II (Second swiveling mode) | Andreas Kalmbach, Guillaume De Nayer, Michael Breuer | Helmut-Schmidt Universität Hamburg | |
2-15 | Benchmark on the Aerodynamics of a Rectangular 5:1 Cylinder (BARC) | Luca Bruno, Maria Vittoria Salvetti | Politecnico di Torino, Università di Pisa | |
Semi-confined Flows | ||||
3-01 | Boundary layer interacting with wakes under adverse pressure gradient - NLR 7301 high lift configuration | Jan Vos | CFS Engineering SA | |
3-03 | 2D Boundary layers with pressure gradients (A) | Florian Menter | AEA Technology | |
3-04 | Laminar-turbulent boundary layer transition | Andrzej Boguslawski | Technical University of Czestochowa | |
3-05 | Shock/boundary-layer interaction (on airplanes) | Anthony Hutton | Qinetiq | |
3-06 | Natural and mixed convection boundary layers on vertical heated walls (A) | André Latrobe | CEA / DRN / Department de Thermohydraulique | |
3-07 | Natural and mixed convection boundary layers on vertical heated walls (B) | Mike Rabbitt | British Energy | |
3-08 | 3D boundary layers under various pressure gradients, including severe adverse pressure gradient causing separation | Pietro Catalano | CIRA | |
3-09 | Impinging jet | Jean-Paul Bonnet, Remi Manceau | Université de Poitiers | |
3-10 | The plane wall jet | Jan Eriksson, Rolf Karlsson | Vattenfall Utveckling AB | |
3-11 | Pipe expansion (with heat transfer) | Jeremy Noyce | Magnox Electric | |
3-12 | Stagnation point flow | Beat Ribi | MAN Turbomaschinen AG Schweiz | |
3-13 | Flow over an isolated hill (without dispersion) | Frederic Archambeau | EDF - R&D Division | |
3-14 | Flow over surface-mounted cube/rectangular obstacles | Ian Castro | University of Southampton | |
3-15 | 2D flow over backward facing step | Arnau Duran | CIMNE | |
3-18 | 2D Boundary layers with pressure gradients (B) | Fred Mendonca | Computational Dynamics Ltd | |
3-30 | 2D Periodic Hill Flow | Christoph Rapp, Michael Breuer, Michael Manhart, Nikolaus Peller | Technische Universität München, Helmut-Schmidt Universität Hamburg | |
3-31 | Flow over curved backward-facing step | Sylvain Lardeau | CD-adapco, London, UK | |
3-32 | Planar shock-wave boundary-layer interaction | Jean-Paul Dussauge, P. Dupont, N. Sandham, E. Garnier | Aix-Marseille Université and Centre National de la Recherche Scientifique UM 7343, University of Southampton, ONERA/DAAP | |
3-33 | Turbulent flow past a wall-mounted hemisphere | Jens Nikolas Wood, Guillaume De Nayer, Stephan Schmidt, Michael Breuer | Helmut-Schmidt Universität Hamburg | |
Confined Flows | ||||
4-02 | Confined coaxial swirling jets | Stefan Hohmann | MTU Aero Engines | |
4-03 | Pipe flow - rotating | Paolo Orlandi, Stefano Leonardi | Universita di Roma 'La Sapienza' | |
4-04 | Flow in a curved rectangular duct - non rotating | Lewis Davenport | Rolls-Royce Marine Power, Engineering & Technology Division | |
4-05 | Curved passage flow | Nouredine Hakimi | NUMECA International | |
4-06 | Swirling diffuser flow | Chris Carey | Fluent Europe Ltd | |
4-08 | Orifice/deflector flow | Martin Sommerfeld | Martin-Luther-Universitat Halle-Wittenberg | |
4-09 | Confined buoyant plume | Isabelle Lavedrine, Darren Woolf | Arup | |
4-10 | Natural convection in simple closed cavity | Nicholas Waterson | Mott MacDonald Ltd | |
4-11 | Simple room flow | Steve Gilham, Athena Scaperdas | Atkins | |
4-13 | Compression of vortex in cavity | Afif Ahmed, Emma Briec | RENAULT | |
4-14 | Flow in pipes with sudden contraction | Francesca Iudicello | ESDU | |
4-16 | Flow in a 3D diffuser | Suad Jakirlić, Gisa John-Puthenveettil | Technische Universität Darmstadt | |
4-18 | Flow and heat transfer in a pin-fin array | Sofiane Benhamadouche | EDF |