UFR 3-36 References: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(38 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
= | =HiFi-TURB-DLR rounded step= | ||
{{ | {{UFRHeader | ||
|area=3 | |area=3 | ||
|number=36 | |number=36 | ||
Line 6: | Line 6: | ||
__NOTOC__ | __NOTOC__ | ||
==== | == Semi-confined flows == | ||
===Underlying Flow Regime 3-36=== | ===Underlying Flow Regime 3-36=== | ||
= References = | = References = | ||
# <div id="1">'''D. Greenblatt, K. B. Paschal, C.-. S. Yao, J. Harris, N. W. Schaeffler and A. E. Washburn''' Experimental Investigation of Separation Control Part 1: Baseline and Steady Suction. ''AIAA Journal'', 44(12):2820–2830, 2006</div> | |||
# <div id="2">'''D. Greenblatt, K. B. Paschal, C.-. S. Yao and J. Harris''' Experimental Investigation of Separation Control Part 2: Zero Mass-Flux Oscillatory Blowing. ''AIAA Journal'', 44(12):2831–2845, 2006</div> | |||
# <div id="3">'''S. Zhang and S. Zhong''' Turbulent Flow Separation over a Two-Dimensional Ramp Using Synthetic Jets. '' AIAA Journal'', 49(12):2637–2649, 2011</div> | |||
# <div id="4">'''Y. Bentaleb, S. Lardeau and M. A. Leschziner''' Large-eddy simulation of turbulent boundary layer separation from a rounded step, ''Journal of Turbulence'', 13(4):1–28, 2012</div> | |||
# <div id="5">'''C. L. Rumsey''' LES: 2-D curved backward-facing step, ''Available: https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html.'' 2021</div> | |||
# <div id="6">'''K. J. Disotell and C. L. Rumsey''' Development of an Axisymmetric Afterbody Test Case for Turbulent Flow Separation Validation, ''NASA/TM-2017-219680, Langley Research Center,'' 2017</div> | |||
# <div id="7">'''K. J. Disotell and C. Rumsey''' Modern CFD Validation of Turbulent Flow Separation on Axisymmetric Afterbodies, ''NASA/Umich Symposium on Advances in Turbulence Modeling,'' 2017</div> | |||
# <div id="8">'''D. Schwamborn, T. Gerhold and R. Kessler''' The DLR TAU-Code: Recent Applications in Research and Industry, '' ECCOMAS CFD 2006 Conference, Netherlands,'' 2006</div> | |||
# <div id="9">'''S. R. Allmaras, F. T. Johnson and P. R. Spalart''' Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model, ''ICCFD7-1902, 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii,'' 2012</div> | |||
# <div id="10">'''M. L. Shur, M. K. Strelets, A. K. Travin and P. R. Spalart''' Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction, ''AIAA Journal,''38(5):784–792, 2000</div> | |||
# <div id="11">'''P. R. Spalart''' Strategies for Turbulence Modelling and Simulation, ''International Journal of Heat and Fluid Flow,''21:252–263, 2000</div> | |||
# <div id="12">'''P. R. Spalart''' private communication, 2020</div> | |||
# <div id="13">'''P. R. Spalart and A. V. Garbaruk,''' A correction to the Spalart-Allmaras Turbulence Model, Providing More Accurate Skin Friction, ''AIAA journal,'' 2020</div> | |||
# <div id="14">'''F. Menter, M. Kuntz and R. Langtry,''' Ten Years of Industrial Experience with the SST Turbulence Model,''Turbulence, Heat and Mass Transfer 4,'' 625–632, 2003</div> | |||
# <div id="15">'''P. Smirnov and F. R. Menter''' Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term,'' ASME Journal of Turbomachinery, ''131;2009</div> | |||
# <div id="16">'''B. Eisfeld, C. Rumsey and V. Togiti''' Verification and Validation of a Second-Moment-Closure Model, ''AIAA Journal,''54(5):1524–1541;2016</div> | |||
# <div id="17">'''B. Eisfeld and C. Rumsey''' Length-Scale Correction for Reynolds Stress Modeling, ''AIAA Aviation Forum,'' 2019</div> | |||
# <div id="18">'''S. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifia and D. Henningson''' Direct numerical simulation of the flow around a wing section at moderate Reynolds number, ''International Journal of Heat and Fluid Flow,'' 61:117–128, 2016</div> | |||
# <div id="19">'''Schlatter, P. and Örlü, R.''' Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects,''Journal of Fluid Mechanics,'' 710:5–34, 2012</div> | |||
# <div id="20">'''F. Bassi, L. Botti, A. Colombo, A. Ghidoni and F. Massa''' Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows, ''Computers & Fluids,'' 118:305–320, 2015</div> | |||
# <div id="21">'''F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini''' A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, ''Turbomachinery - Fluid Dynamics and Thermodynamics," 670 European Conference,'' 2:99–108, 1997</div> | |||
# <div id="22">'''G. Di Marzo''' Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques, ''MSc Mathematics Thesis, Faculty of Science, University of Geneva, '' 1993</div> | |||
# <div id="23">'''G. Noventa, F. Massa, S. Rebay, F. Bassi and A. Ghidoni''' Robustness and efficiency of an implicit time-adaptive discontinuous Galerkin solver for unsteady flows, ''Computers & Fluids, '' 204 2020</div> | |||
# <div id="24">'''D. Warnack and H. H. Fernholz ''' The effects of a favourable pressure gradient and of the reynolds number on an incompressible axisymmetric turbulent boundary layer. part1. the turbulent boundary layer.,'' Journal of Fluid Mechanics'', 359:329–356,, 1998</div> | |||
# <div id="25">'''J. Kuehnen, D. Scarselli, M. Schaner and B. Hof''' Relaminarization by steady modification of the streamwise velocity profile in a pipe, ''Flow Turbulence & Combustion, '' 100:919–943, 2018</div> | |||
# <div id="26">'''R. Narashima and R. Ranjan''' An Assessment of the Two-Layer Quasi-Laminar Theory of Relaminarization Through Recent High-Re Accelerated Turbulent Boundary Layer Experiment, ''Journal of Fluids Engineering,'' 139(11):111205–111215, 2017</div> | |||
# <div id="27">'''S. Lardeau''' UFR 3-31: Flow over curved backward-facing step, ''Available: https://www.kbwiki.ercoftac.org/w/index.php/Abstr:UFR_3-31. [Accessed 25 July 2022],'' 2012</div> | |||
# <div id="28">'''F. Bassi, A. Crivellini, S. Rebay and M. Savini''' Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k-ω turbulence model equations, ''Computers and Fluids'', 34:507-540, 2005</div> | |||
# <div id="29">'''F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro and P. Tesini''' On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, ''Journal of Computational Physics'', 231:45-65, 2012</div> | |||
# <div id="30">'''F. Bassi, L. Botti, A. Colombo and S. Rebay''' Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations, ''Computers and Fluids'', 61:77-85, 2012</div> | |||
# <div id="31">'''C.T. Kelley and D.E. Keyes ''' Convergence Analysis of Pseudo-Transient Continuation, ''SIAM Journal on Numerical Analysis, '' 35(2):508–523, 1998 </div> | |||
# <div id="32">'''D.C. Wilcox '''Formulation of the k-<math>\omega</math> turbulence model revisited, ''AIAA Journal'', 46:2823-2838, 2008</div> </div> | |||
<br/> | <br/> | ||
---- | ---- |
Latest revision as of 15:56, 17 February 2023
HiFi-TURB-DLR rounded step
Semi-confined flows
Underlying Flow Regime 3-36
References
- D. Greenblatt, K. B. Paschal, C.-. S. Yao, J. Harris, N. W. Schaeffler and A. E. Washburn Experimental Investigation of Separation Control Part 1: Baseline and Steady Suction. AIAA Journal, 44(12):2820–2830, 2006
- D. Greenblatt, K. B. Paschal, C.-. S. Yao and J. Harris Experimental Investigation of Separation Control Part 2: Zero Mass-Flux Oscillatory Blowing. AIAA Journal, 44(12):2831–2845, 2006
- S. Zhang and S. Zhong Turbulent Flow Separation over a Two-Dimensional Ramp Using Synthetic Jets. AIAA Journal, 49(12):2637–2649, 2011
- Y. Bentaleb, S. Lardeau and M. A. Leschziner Large-eddy simulation of turbulent boundary layer separation from a rounded step, Journal of Turbulence, 13(4):1–28, 2012
- C. L. Rumsey LES: 2-D curved backward-facing step, Available: https://turbmodels.larc.nasa.gov/Other_LES_Data/curvedstep.html. 2021
- K. J. Disotell and C. L. Rumsey Development of an Axisymmetric Afterbody Test Case for Turbulent Flow Separation Validation, NASA/TM-2017-219680, Langley Research Center, 2017
- K. J. Disotell and C. Rumsey Modern CFD Validation of Turbulent Flow Separation on Axisymmetric Afterbodies, NASA/Umich Symposium on Advances in Turbulence Modeling, 2017
- D. Schwamborn, T. Gerhold and R. Kessler The DLR TAU-Code: Recent Applications in Research and Industry, ECCOMAS CFD 2006 Conference, Netherlands, 2006
- S. R. Allmaras, F. T. Johnson and P. R. Spalart Modifications and Clarifications for the Implementation of the Spalart-Allmaras Turbulence Model, ICCFD7-1902, 7th International Conference on Computational Fluid Dynamics, Big Island, Hawaii, 2012
- M. L. Shur, M. K. Strelets, A. K. Travin and P. R. Spalart Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction, AIAA Journal,38(5):784–792, 2000
- P. R. Spalart Strategies for Turbulence Modelling and Simulation, International Journal of Heat and Fluid Flow,21:252–263, 2000
- P. R. Spalart private communication, 2020
- P. R. Spalart and A. V. Garbaruk, A correction to the Spalart-Allmaras Turbulence Model, Providing More Accurate Skin Friction, AIAA journal, 2020
- F. Menter, M. Kuntz and R. Langtry, Ten Years of Industrial Experience with the SST Turbulence Model,Turbulence, Heat and Mass Transfer 4, 625–632, 2003
- P. Smirnov and F. R. Menter Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term, ASME Journal of Turbomachinery, 131;2009
- B. Eisfeld, C. Rumsey and V. Togiti Verification and Validation of a Second-Moment-Closure Model, AIAA Journal,54(5):1524–1541;2016
- B. Eisfeld and C. Rumsey Length-Scale Correction for Reynolds Stress Modeling, AIAA Aviation Forum, 2019
- S. Hosseini, R. Vinuesa, P. Schlatter, A. Hanifia and D. Henningson Direct numerical simulation of the flow around a wing section at moderate Reynolds number, International Journal of Heat and Fluid Flow, 61:117–128, 2016
- Schlatter, P. and Örlü, R. Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects,Journal of Fluid Mechanics, 710:5–34, 2012
- F. Bassi, L. Botti, A. Colombo, A. Ghidoni and F. Massa Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows, Computers & Fluids, 118:305–320, 2015
- F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Turbomachinery - Fluid Dynamics and Thermodynamics," 670 European Conference, 2:99–108, 1997
- G. Di Marzo Méthodes de Rosenbrock d’ordre 5(4) adaptées aux problemes différentiels-algébriques, MSc Mathematics Thesis, Faculty of Science, University of Geneva, 1993
- G. Noventa, F. Massa, S. Rebay, F. Bassi and A. Ghidoni Robustness and efficiency of an implicit time-adaptive discontinuous Galerkin solver for unsteady flows, Computers & Fluids, 204 2020
- D. Warnack and H. H. Fernholz The effects of a favourable pressure gradient and of the reynolds number on an incompressible axisymmetric turbulent boundary layer. part1. the turbulent boundary layer., Journal of Fluid Mechanics, 359:329–356,, 1998
- J. Kuehnen, D. Scarselli, M. Schaner and B. Hof Relaminarization by steady modification of the streamwise velocity profile in a pipe, Flow Turbulence & Combustion, 100:919–943, 2018
- R. Narashima and R. Ranjan An Assessment of the Two-Layer Quasi-Laminar Theory of Relaminarization Through Recent High-Re Accelerated Turbulent Boundary Layer Experiment, Journal of Fluids Engineering, 139(11):111205–111215, 2017
- S. Lardeau UFR 3-31: Flow over curved backward-facing step, Available: https://www.kbwiki.ercoftac.org/w/index.php/Abstr:UFR_3-31. [Accessed 25 July 2022], 2012
- F. Bassi, A. Crivellini, S. Rebay and M. Savini Discontinuous Galerkin solution of the Reynolds-averaged Navier–Stokes and k-ω turbulence model equations, Computers and Fluids, 34:507-540, 2005
- F. Bassi, L. Botti, A. Colombo, D.A. Di Pietro and P. Tesini On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, Journal of Computational Physics, 231:45-65, 2012
- F. Bassi, L. Botti, A. Colombo and S. Rebay Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations, Computers and Fluids, 61:77-85, 2012
- C.T. Kelley and D.E. Keyes Convergence Analysis of Pseudo-Transient Continuation, SIAM Journal on Numerical Analysis, 35(2):508–523, 1998
- D.C. Wilcox Formulation of the k- turbulence model revisited, AIAA Journal, 46:2823-2838, 2008
Contributed by: Erij Alaya and Cornelia Grabe — Deutsches Luft-und Raumfahrt Zentrum (DLR)
© copyright ERCOFTAC 2024