UFR 4-10 References: Difference between revisions
David.Fowler (talk | contribs) m (→References) |
m (Dave.Ellacott moved page Silver:UFR 4-10 References to UFR 4-10 References over redirect) |
||
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{UFR|front=UFR 4-10|description=UFR 4-10 Description|references=UFR 4-10 References|testcase=UFR 4-10 Test Case|evaluation=UFR 4-10 Evaluation|qualityreview=UFR 4-10 Quality Review|bestpractice=UFR 4-10 Best Practice Advice|relatedACs=UFR 4-10 Related ACs}} | {{UFR|front=UFR 4-10|description=UFR 4-10 Description|references=UFR 4-10 References|testcase=UFR 4-10 Test Case|evaluation=UFR 4-10 Evaluation|qualityreview=UFR 4-10 Quality Review|bestpractice=UFR 4-10 Best Practice Advice|relatedACs=UFR 4-10 Related ACs}} | ||
Line 15: | Line 14: | ||
== References == | == References == | ||
1. | 1. K. Abe, T. Kondoh and Y. Nagano. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows: II. Thermal field calculations. ''Int. J. Heat and Mass Transfer'', Vol. 38, No. 8, 14671481, 1995. | ||
2. | 2. A.Bejan. ''Convection heat transfer''. 2<sup>nd</sup> edition, John Wiley and Sons, 1995. | ||
3. | 3. P.L.Betts and I.H.Bokhari. Experiments on turbulent natural convection in an enclosed tall cavity. ''Int. J. Heat and Fluid Flow'', Vol. 21, 675-683, 2000. | ||
4. | 4. P.L.Betts and A.A.Dafa’Alla. Turbulent buoyant air flow in a tall rectangular cavity. ''ASME Annual Winter Meeting, ''HTD Vol. 60, 83-92, 1986. | ||
5. | 5. I.H.Bokhari. ''Turbulent Natural Convection in a Tall Cavity''. PhD Thesis, University of Manchester Institute of Science and Technology (UMIST), 1996. | ||
6. | 6. R.Boudjemadi, V.Maupu, D.Laurence, P.Le Quéré, Budgets of turbulent stresses and fluxes in a vertical slot natural convection flow at Rayleigh Ra=10<sup>5</sup> and 5.4x10<sup>5</sup>. ''Int. J. Heat and Fluid Flow'', Vol. 18, 70-79, 1997. | ||
7. | 7. V.M.Canuto, M.S.Dubovikov and A.Dienstfrey. A dynamics model for turbulence: IV. Buoyancy-driven flows. ''Physics of Fluids'', Vol. 9, No. 7, 2118-2131, 1997. | ||
8. | 8. F.C.Chang and M.Bottoni. Capabilities of Reynolds-stress turbulence model in application to thermal stratification. ''ASME Meeting on Transient Thermal Hydraulics, Heat Transfer, Fluid-Structure Interaction and Structural Dynamics'', 11-22, 1994. | ||
9. | 9. R.Cheesewright, K.J.King and S.Ziai. Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows. In ''Significant Questions in Buoyancy-Affected Enclosure or Cavity Flows, ''HTD-60, pp 75-81, American Society of Mechanical Engineers, 1986. | ||
10. | 10. R.Cheesewright and S.Ziai. Distributions of temperature and local heat-transfer rate in turbulent natural convection in a large rectangular cavity, ''Proc. 8<sup>th</sup> International Heat Transfer Conference, San Francisco, USA'', pp 1465-1470, 1986. | ||
11. | 11. R.Cheesewright and K.J.King. Stress distributions in turbulent natural convection in a rectangular cavity, ''Proc. 9<sup>th</sup> International Heat Transfer Conference, Jerusalem, Israel'', Vol. 2, pp 161-167, 1990. | ||
12. | 12. D.R.Chenoweth and S.Paolucci. Natural convection in an enclosed vertical air layer with large horizontal temperature differences. ''J. Fluid Mechanics'', Vol. 169, 173210, 1986. | ||
13. | 13. A.A.Dafa’Alla and P.L.Betts. Experimental study of turbulent natural convection in a tall air cavity, ''Experimental Heat Transfer'', Vol. 9, 165-194, 1996. | ||
14. | 14. L.Davidson. Calculation of the turbulent buoyancy-driven flow in a rectangular cavity using an efficient solver and two different low Reynolds number k-ε turbulence models''. Numerical Heat Transfer'', Vol. 18, 129-147, 1990. | ||
15. | 15. L.Davidson. Second-order corrections of the ''k''-ε model to account for non-isotropic effects due to buoyancy. ''Int. J. Heat and Mass Transfer'', Vol. 33, 2599-2608, 1990. | ||
16. | 16. L.Davidson. Computation of natural-convection flow in a square cavity, in ''Turbulent Natural Convection in Enclosures, Proc. Eurotherm Seminar'' ''No. 22'', R.A.W.M.Henkes and C.J.Hoogendoorn (Eds.), 45-53, 1993. | ||
17. | 17. I.Demirdžić, Ž.Lilek and M.Perić. Fluid flow and heat transfer test problems for nonorthogonal grids: benchmark solutions. ''Int. J. Numerical Methods in Fluids'', Vol. 15, 329354, 1992. | ||
18. | 18. G.De Vahl Davis. Natural convection of air in a square cavity: a benchmark numerical solution. ''Int. J. Numerical Methods in Fluids'', Vol. 3, 249264, 1983. | ||
19. | 19. H.Dol, K.Hanjalić and S.Kenjereš. A comparative assessment of the second-moment differential and algebraic models in turbulent natural convection. ''Int. J. Heat and Fluid Flow'', Vol. 18, 4-14, 1997. | ||
20. | 20. ''H.Dol, K.Hanjalić, T.A.M.Versteegh.'' A DNS-based thermal second moment closure for buoyant convection at vertical walls. ''J. Fluid Mechanics'', Vol. 391, 211-247, 1999. | ||
21. | 21. ''H.Dol and K.Hanjalić.'' Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number. ''Int. J. of Heat and Mass Transfer,'' Vol. 44, 2323-2344, 2001. | ||
22. | 22. T.M.Eidson. Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling''. J. Fluid Mech.'', Vol. 158, 245-268, 1985. | ||
23. | 23. J.W.Elder. Turbulent free convection in a vertical slot. ''J. Fluid Mechanics'', Vol. 23, 99-111, 1965. | ||
24. | 24. ERCOFTAC/IAHR: ''5<sup>th</sup> ERCOFTAC/IAHR Workshop on Refined Flow Modelling'', Electricité de France, Chatou, France, 1996. | ||
25. | 25. B.Gebhart, Y.Jaluria, R.L.Mahajan and B.Sammakia. ''BuoyancyInduced Flows and Transport''. Hemisphere Publishing Corporation, 1988. | ||
26. | 26. ''W.K.George and S.P.Capp.'' A theory for natural convection turbulent boundary layers next to heated surfaces. ''Int. J. of Heat and Mass Transfer,'' Vol. 22, 813-826, 1979. | ||
27. | 27. P.W.Giel and F.W.Schmidt. A comparison of turbulence modelling predictions to experimental measurements for high Rayleigh number natural convection in enclosures, ''Proc. 9<sup>th</sup> International Heat Transfer Conference, Jerusalem, Israel'', Vol. 2, pp 175-180, 1990. | ||
28. | 28. J.Goussebaille and P.L.Viollet, On the modelling of turbulent flow under strong buoyant effects in cavities with curved boundaries, ''Proc. Symp. Refined Modelling of Flows, Paris'', 1982. | ||
29. | 29. K.Hanjalić. Achievements and limitations in modelling and computation of buoyant turbulent flows and heat transfer. ''Proc. 10<sup>th</sup> Int. Heat Transfer Conf.'', G.F.Hewitt (Ed.), Vol. 1:135, 1-18, 1994. | ||
30. | 30. K.Hanjalić. Turbulence models for buoyant flows: termbyterm scrutiny and engineering relevance. ''Proceedings of the 4th ECCOMAS CFD Conference'', Athens, Greece, John Wiley and Sons, 845854, 1998. | ||
31. ''K.Hanjalić.'' One-point closure models for buoyancy driven turbulent flows''. Annual Review of Fluid Mechanics'', 34, 321-348, 2002. | 31. ''K.Hanjalić.'' One-point closure models for buoyancy driven turbulent flows''. Annual Review of Fluid Mechanics'', 34, 321-348, 2002. | ||
32. | 32. K.Hanjalić and S.Vasić. Computation of turbulent natural convection in rectangular enclosures with an algebraic flux model. ''Int. J. Heat and Mass Transfer'', Vol. 36, 3603-3624, 1993. | ||
33. | 33. K.Hanjalić, S.Kenjereš and F.Durst. Natural convection in partitioned two-dimensional enclosures at higher Rayleigh numbers. ''Int. J. Heat and Mass Transfer'', Vol. 39, No. 7, 1407-1427, 1996. | ||
34. | 34. R.A.W.M.Henkes and C.J.Hoogendoorn. Comparison of turbulence models for the natural convection boundary layer along a heated vertical plate. ''Int. J. Heat and Mass Transfer'', Vol. 32, 157-169, 1989. | ||
35. | 35. R.A.W.M.Henkes and C.J.Hoogendoorn. Numerical determination of wall functions for the turbulent natural convection boundary layer. ''Int. J. Heat and Mass Transfer'', Vol. 33, 1087-1097, 1990. | ||
36. | 36. M.Hortmann, M.Perić and G.Scheuerer. Finite volume multigrid prediction of laminar natural convection: benchmark solutions. ''Int. J. Numerical Methods in Fluids'', Vol. 11, 189207, 1990. | ||
37. | 37. J.A.C.Humphrey and W.M.To. Numerical simulation of buoyant, turbulent flow - II. Free and mixed convection in a heated cavity. ''Int. J. Heat and Mass Transfer'', Vol. 29, 593-610, 1986. | ||
38. | 38. N.Z.Ince and B.E.Launder. On the computation of buoyancy-driven turbulent flows in rectangluar enclosures. ''Int. J. Heat and Fluid Flow'', Vol. 10:2, 110-117, 1989. | ||
39. | 39. R.J.A.Janssen and R.A.W.M.Henkes. Accuracy of finitevolume discretizations for the bifurcating naturalconvection flow in a square cavity. ''Numerical Heat Transfer, Part B'', 24:191207, 1993. | ||
40. | 40. A.M.Lankhorst ''et al.'' LDV measurements of buoyancy-induced flows in an enclosure at high Rayleigh numbers. ''Experimental Thermal and Fluid Science'', Vol. 6, 74-79, 1993. | ||
41. | 41. B.E. Launder. On the computation of convective heat transfer in complex turbulent flows. ''ASME J. Heat Transfer'', Vol. 110, 11121128, 1988. | ||
42. | 42. D.Laurence, Applications of Reynolds-averaged Navier-Stokes equations to industrial flows. In: ''Introduction to the Modelling of Turbulence'', Lecture Series 2002-02, von Karman Institute for Fluid Dynamics, Belgium, C. Benocci and J.P.A.J. van Beeck (Eds.), 2002. | ||
43. | 43. P. Le Quéré. Accurate solutions to the square thermally driven cavity at high Rayleigh number. ''Computers and Fluids'', Vol. 20, 2941, 1991. | ||
44. | 44. N.N.Lin and A.Bejan. Natural convection in a partially divided enclosure, ''Int. J. Heat and Mass Transfer'', Vol. 26, No. 12, 1867-1878, 1983. | ||
45. | 45. F.Liu and J.X.Wen. Development and validation of an advanced turbulence model for buoyancy driven flows in enclosures, ''Int. J. Heat and Mass Transfer'', Vol. 42, 3967-3981, 1999. | ||
46. | 46. M.Ljuboja and W.Rodi. Prediction of horizontal and vertical turbulent buoyant wall jets, ''J. Heat Transfer, Trans. ASME'', Vol. 103, 343-349, 1981. | ||
47. | 47. N.C.Markatos and K.A.Pericleous. Laminar and turbulent natural convection in an enclosed cavity, ''Int. J. Heat and Mass Transfer'', Vol. 27, 755-772, 1984. | ||
48. | 48. S.Mergui and F.Penot. Natural convection in a differentially heated square cavity: experimental investigation at ''Ra''<nowiki>=1.69x10</nowiki><sup>9</sup>, ''Int. J. Heat and Mass Transfer'', Vol. 39, No. 3, 563-574, 1996. | ||
49. | 49. T.Muramatsu and H.Ninokata. Investigation of turbulence modelling in thermal stratification analysis. ''Nuclear Engineering Design'', Vol. 150, 81-93, 1994. | ||
50. | 50. M.W.Nansteel and R.Greif. An investigation of natural convection in enclosures with two- and three-dimensional partitions, ''Int. J. Heat and Mass Transfer'', Vol. 27, No. 4, 561-571, 1984. | ||
51. | 51. I.J.Opstelten ''et al.'' Turbulent quantities of a natural convection flow in a side-heated enclosure: experiments and calculations''. Proc. 2<sup>nd</sup> European Thermal Sciences and 14<sup>th</sup> UIT National Heat Transfer Conference'', 795-802, 1996. | ||
52. | 52. S.Ostrach. Natural Convection in Enclosures. ''ASME J. Heat Transfer'', Vol. 110, 11751190, 1988. | ||
53. | 53. M.N.Özişik. ''Heat Transfer A Basic Approach''. International Edition, McGrawHill, 1985. | ||
54. | 54. H.Paillère and P.Le Quéré. Modelling and simulation of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. Workshop, 12th Seminar on Computational Fluid Dynamics, CEA Saclay, France, January 2000. | ||
55. | 55. S.-H.Peng and L. Davidson, Numerical investigation of turbulent buoyant cavity flow using large eddy simulation. In ''Turbulence, Heat and Mass Transfer 3, Nagoya, Japan'', Y.Nagano, K.Hanjalic and T.Tsuji, A Shuppan (Eds.), 737-744, 2000. | ||
56. | 56. S.-H.Peng and L. Davidson, Comparative study of LES for turbulent buoyant flow in terms of SGS model and grid resolution, ''2<sup>nd</sup> Int. Symposium on Turbulence and Shear Flow Phenomena, Stockholm'', Vol. 2, 455-460, 2001. | ||
57. | 57. U.Schumann. Subgrid length-scales for large eddy simulation of stratified turbulence. ''Theoretical Computational Fluid Dynamics'', Vol. 2, 279-290, 1991. | ||
58. | 58. A.Shabbir and D.B.Taulbee. Evaluation of turbulence models for predicting buoyant flows. ''J. Heat Transfer'', Vol. 112, 945-951, 1990. | ||
59. | 59. C.P.Thompson, N.S.Wilkes and I.P.Jones. Numerical studies of buoyancy-driven turbulent flow in a rectangluar cavity. ''Int. J. Numerical Methods in Engineering'', Vol. 24, 89-99, 1987. | ||
60. | 60. Y.S.Tian, T.G.Karayiannis, J.X.Wen, R.D.Matthews. Temperature distribution in low turbulence natural convection in a square cavity. In ''Experimental Heat Transfer, Fluid Mechanics and Thermodynamics'', M.Giot, F.Mayinger, G.P.Celata (Eds.) Edizioni ETS, 2267-2274, 1997. | ||
61. | 61. Y.S.Tian and T.G.Karayiannis. Low turbulence natural convection in an air filled square cavity. Part I: The thermal and fluid flow field. ''Int. J. Heat and Mass Transfer'', Vol. 43, 849-866, 2000. | ||
62. | 62. D.J.Tritton. ''Physical Fluid Dynamics'', van Nostrand Reinhold, 1<sup>st</sup> ed., 1977. | ||
63. | 63. T.A.M.Versteegh and F.T.M.Nieuwstadt. DNS of natural convection between two vertical, differentially heated walls. ''Proc. 11<sup>th</sup> Symposium on Turbulent Shear Flows'', ''Grenoble'', 1997. | ||
64. | 64. N.P.Waterson. ''Simulation of turbulent flow, heat and mass transfer using a residual-distribution approach''. PhD Thesis, Delft University of Technology, The Netherlands, 2003. | ||
65. | 65. J.X.Wen, F.Liu and S.Lo. Performance comparison of a buoyancy-modified turbulence model with three LRN turbulence models for a square cavity''. Numerical Heat Transfer, Part B'', 39:257-276, 2001. | ||
66. | 66. K.H. Winters. Laminar natural convection in a partially divided rectangular cavity at high Rayleigh number. ''Int. J. Numerical Methods in Fluids'', 8:247281, 1988. | ||
Line 158: | Line 157: | ||
{{UFR|front=UFR 4-10|description=UFR 4-10 Description|references=UFR 4-10 References|testcase=UFR 4-10 Test Case|evaluation=UFR 4-10 Evaluation|qualityreview=UFR 4-10 Quality Review|bestpractice=UFR 4-10 Best Practice Advice|relatedACs=UFR 4-10 Related ACs}} | {{UFR|front=UFR 4-10|description=UFR 4-10 Description|references=UFR 4-10 References|testcase=UFR 4-10 Test Case|evaluation=UFR 4-10 Evaluation|qualityreview=UFR 4-10 Quality Review|bestpractice=UFR 4-10 Best Practice Advice|relatedACs=UFR 4-10 Related ACs}} | ||
Latest revision as of 14:26, 12 February 2017
Natural convection in simple closed cavity
Underlying Flow Regime 4-10 © copyright ERCOFTAC 2004
References
1. K. Abe, T. Kondoh and Y. Nagano. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows: II. Thermal field calculations. Int. J. Heat and Mass Transfer, Vol. 38, No. 8, 14671481, 1995.
2. A.Bejan. Convection heat transfer. 2nd edition, John Wiley and Sons, 1995.
3. P.L.Betts and I.H.Bokhari. Experiments on turbulent natural convection in an enclosed tall cavity. Int. J. Heat and Fluid Flow, Vol. 21, 675-683, 2000.
4. P.L.Betts and A.A.Dafa’Alla. Turbulent buoyant air flow in a tall rectangular cavity. ASME Annual Winter Meeting, HTD Vol. 60, 83-92, 1986.
5. I.H.Bokhari. Turbulent Natural Convection in a Tall Cavity. PhD Thesis, University of Manchester Institute of Science and Technology (UMIST), 1996.
6. R.Boudjemadi, V.Maupu, D.Laurence, P.Le Quéré, Budgets of turbulent stresses and fluxes in a vertical slot natural convection flow at Rayleigh Ra=105 and 5.4x105. Int. J. Heat and Fluid Flow, Vol. 18, 70-79, 1997.
7. V.M.Canuto, M.S.Dubovikov and A.Dienstfrey. A dynamics model for turbulence: IV. Buoyancy-driven flows. Physics of Fluids, Vol. 9, No. 7, 2118-2131, 1997.
8. F.C.Chang and M.Bottoni. Capabilities of Reynolds-stress turbulence model in application to thermal stratification. ASME Meeting on Transient Thermal Hydraulics, Heat Transfer, Fluid-Structure Interaction and Structural Dynamics, 11-22, 1994.
9. R.Cheesewright, K.J.King and S.Ziai. Experimental data for the validation of computer codes for the prediction of two-dimensional buoyant cavity flows. In Significant Questions in Buoyancy-Affected Enclosure or Cavity Flows, HTD-60, pp 75-81, American Society of Mechanical Engineers, 1986.
10. R.Cheesewright and S.Ziai. Distributions of temperature and local heat-transfer rate in turbulent natural convection in a large rectangular cavity, Proc. 8th International Heat Transfer Conference, San Francisco, USA, pp 1465-1470, 1986.
11. R.Cheesewright and K.J.King. Stress distributions in turbulent natural convection in a rectangular cavity, Proc. 9th International Heat Transfer Conference, Jerusalem, Israel, Vol. 2, pp 161-167, 1990.
12. D.R.Chenoweth and S.Paolucci. Natural convection in an enclosed vertical air layer with large horizontal temperature differences. J. Fluid Mechanics, Vol. 169, 173210, 1986.
13. A.A.Dafa’Alla and P.L.Betts. Experimental study of turbulent natural convection in a tall air cavity, Experimental Heat Transfer, Vol. 9, 165-194, 1996.
14. L.Davidson. Calculation of the turbulent buoyancy-driven flow in a rectangular cavity using an efficient solver and two different low Reynolds number k-ε turbulence models. Numerical Heat Transfer, Vol. 18, 129-147, 1990.
15. L.Davidson. Second-order corrections of the k-ε model to account for non-isotropic effects due to buoyancy. Int. J. Heat and Mass Transfer, Vol. 33, 2599-2608, 1990.
16. L.Davidson. Computation of natural-convection flow in a square cavity, in Turbulent Natural Convection in Enclosures, Proc. Eurotherm Seminar No. 22, R.A.W.M.Henkes and C.J.Hoogendoorn (Eds.), 45-53, 1993.
17. I.Demirdžić, Ž.Lilek and M.Perić. Fluid flow and heat transfer test problems for nonorthogonal grids: benchmark solutions. Int. J. Numerical Methods in Fluids, Vol. 15, 329354, 1992.
18. G.De Vahl Davis. Natural convection of air in a square cavity: a benchmark numerical solution. Int. J. Numerical Methods in Fluids, Vol. 3, 249264, 1983.
19. H.Dol, K.Hanjalić and S.Kenjereš. A comparative assessment of the second-moment differential and algebraic models in turbulent natural convection. Int. J. Heat and Fluid Flow, Vol. 18, 4-14, 1997.
20. H.Dol, K.Hanjalić, T.A.M.Versteegh. A DNS-based thermal second moment closure for buoyant convection at vertical walls. J. Fluid Mechanics, Vol. 391, 211-247, 1999.
21. H.Dol and K.Hanjalić. Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number. Int. J. of Heat and Mass Transfer, Vol. 44, 2323-2344, 2001.
22. T.M.Eidson. Numerical simulation of the turbulent Rayleigh-Benard problem using subgrid modelling. J. Fluid Mech., Vol. 158, 245-268, 1985.
23. J.W.Elder. Turbulent free convection in a vertical slot. J. Fluid Mechanics, Vol. 23, 99-111, 1965.
24. ERCOFTAC/IAHR: 5th ERCOFTAC/IAHR Workshop on Refined Flow Modelling, Electricité de France, Chatou, France, 1996.
25. B.Gebhart, Y.Jaluria, R.L.Mahajan and B.Sammakia. BuoyancyInduced Flows and Transport. Hemisphere Publishing Corporation, 1988.
26. W.K.George and S.P.Capp. A theory for natural convection turbulent boundary layers next to heated surfaces. Int. J. of Heat and Mass Transfer, Vol. 22, 813-826, 1979.
27. P.W.Giel and F.W.Schmidt. A comparison of turbulence modelling predictions to experimental measurements for high Rayleigh number natural convection in enclosures, Proc. 9th International Heat Transfer Conference, Jerusalem, Israel, Vol. 2, pp 175-180, 1990.
28. J.Goussebaille and P.L.Viollet, On the modelling of turbulent flow under strong buoyant effects in cavities with curved boundaries, Proc. Symp. Refined Modelling of Flows, Paris, 1982.
29. K.Hanjalić. Achievements and limitations in modelling and computation of buoyant turbulent flows and heat transfer. Proc. 10th Int. Heat Transfer Conf., G.F.Hewitt (Ed.), Vol. 1:135, 1-18, 1994.
30. K.Hanjalić. Turbulence models for buoyant flows: termbyterm scrutiny and engineering relevance. Proceedings of the 4th ECCOMAS CFD Conference, Athens, Greece, John Wiley and Sons, 845854, 1998.
31. K.Hanjalić. One-point closure models for buoyancy driven turbulent flows. Annual Review of Fluid Mechanics, 34, 321-348, 2002.
32. K.Hanjalić and S.Vasić. Computation of turbulent natural convection in rectangular enclosures with an algebraic flux model. Int. J. Heat and Mass Transfer, Vol. 36, 3603-3624, 1993.
33. K.Hanjalić, S.Kenjereš and F.Durst. Natural convection in partitioned two-dimensional enclosures at higher Rayleigh numbers. Int. J. Heat and Mass Transfer, Vol. 39, No. 7, 1407-1427, 1996.
34. R.A.W.M.Henkes and C.J.Hoogendoorn. Comparison of turbulence models for the natural convection boundary layer along a heated vertical plate. Int. J. Heat and Mass Transfer, Vol. 32, 157-169, 1989.
35. R.A.W.M.Henkes and C.J.Hoogendoorn. Numerical determination of wall functions for the turbulent natural convection boundary layer. Int. J. Heat and Mass Transfer, Vol. 33, 1087-1097, 1990.
36. M.Hortmann, M.Perić and G.Scheuerer. Finite volume multigrid prediction of laminar natural convection: benchmark solutions. Int. J. Numerical Methods in Fluids, Vol. 11, 189207, 1990.
37. J.A.C.Humphrey and W.M.To. Numerical simulation of buoyant, turbulent flow - II. Free and mixed convection in a heated cavity. Int. J. Heat and Mass Transfer, Vol. 29, 593-610, 1986.
38. N.Z.Ince and B.E.Launder. On the computation of buoyancy-driven turbulent flows in rectangluar enclosures. Int. J. Heat and Fluid Flow, Vol. 10:2, 110-117, 1989.
39. R.J.A.Janssen and R.A.W.M.Henkes. Accuracy of finitevolume discretizations for the bifurcating naturalconvection flow in a square cavity. Numerical Heat Transfer, Part B, 24:191207, 1993.
40. A.M.Lankhorst et al. LDV measurements of buoyancy-induced flows in an enclosure at high Rayleigh numbers. Experimental Thermal and Fluid Science, Vol. 6, 74-79, 1993.
41. B.E. Launder. On the computation of convective heat transfer in complex turbulent flows. ASME J. Heat Transfer, Vol. 110, 11121128, 1988.
42. D.Laurence, Applications of Reynolds-averaged Navier-Stokes equations to industrial flows. In: Introduction to the Modelling of Turbulence, Lecture Series 2002-02, von Karman Institute for Fluid Dynamics, Belgium, C. Benocci and J.P.A.J. van Beeck (Eds.), 2002.
43. P. Le Quéré. Accurate solutions to the square thermally driven cavity at high Rayleigh number. Computers and Fluids, Vol. 20, 2941, 1991.
44. N.N.Lin and A.Bejan. Natural convection in a partially divided enclosure, Int. J. Heat and Mass Transfer, Vol. 26, No. 12, 1867-1878, 1983.
45. F.Liu and J.X.Wen. Development and validation of an advanced turbulence model for buoyancy driven flows in enclosures, Int. J. Heat and Mass Transfer, Vol. 42, 3967-3981, 1999.
46. M.Ljuboja and W.Rodi. Prediction of horizontal and vertical turbulent buoyant wall jets, J. Heat Transfer, Trans. ASME, Vol. 103, 343-349, 1981.
47. N.C.Markatos and K.A.Pericleous. Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat and Mass Transfer, Vol. 27, 755-772, 1984.
48. S.Mergui and F.Penot. Natural convection in a differentially heated square cavity: experimental investigation at Ra=1.69x109, Int. J. Heat and Mass Transfer, Vol. 39, No. 3, 563-574, 1996.
49. T.Muramatsu and H.Ninokata. Investigation of turbulence modelling in thermal stratification analysis. Nuclear Engineering Design, Vol. 150, 81-93, 1994.
50. M.W.Nansteel and R.Greif. An investigation of natural convection in enclosures with two- and three-dimensional partitions, Int. J. Heat and Mass Transfer, Vol. 27, No. 4, 561-571, 1984.
51. I.J.Opstelten et al. Turbulent quantities of a natural convection flow in a side-heated enclosure: experiments and calculations. Proc. 2nd European Thermal Sciences and 14th UIT National Heat Transfer Conference, 795-802, 1996.
52. S.Ostrach. Natural Convection in Enclosures. ASME J. Heat Transfer, Vol. 110, 11751190, 1988.
53. M.N.Özişik. Heat Transfer A Basic Approach. International Edition, McGrawHill, 1985.
54. H.Paillère and P.Le Quéré. Modelling and simulation of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. Workshop, 12th Seminar on Computational Fluid Dynamics, CEA Saclay, France, January 2000.
55. S.-H.Peng and L. Davidson, Numerical investigation of turbulent buoyant cavity flow using large eddy simulation. In Turbulence, Heat and Mass Transfer 3, Nagoya, Japan, Y.Nagano, K.Hanjalic and T.Tsuji, A Shuppan (Eds.), 737-744, 2000.
56. S.-H.Peng and L. Davidson, Comparative study of LES for turbulent buoyant flow in terms of SGS model and grid resolution, 2nd Int. Symposium on Turbulence and Shear Flow Phenomena, Stockholm, Vol. 2, 455-460, 2001.
57. U.Schumann. Subgrid length-scales for large eddy simulation of stratified turbulence. Theoretical Computational Fluid Dynamics, Vol. 2, 279-290, 1991.
58. A.Shabbir and D.B.Taulbee. Evaluation of turbulence models for predicting buoyant flows. J. Heat Transfer, Vol. 112, 945-951, 1990.
59. C.P.Thompson, N.S.Wilkes and I.P.Jones. Numerical studies of buoyancy-driven turbulent flow in a rectangluar cavity. Int. J. Numerical Methods in Engineering, Vol. 24, 89-99, 1987.
60. Y.S.Tian, T.G.Karayiannis, J.X.Wen, R.D.Matthews. Temperature distribution in low turbulence natural convection in a square cavity. In Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, M.Giot, F.Mayinger, G.P.Celata (Eds.) Edizioni ETS, 2267-2274, 1997.
61. Y.S.Tian and T.G.Karayiannis. Low turbulence natural convection in an air filled square cavity. Part I: The thermal and fluid flow field. Int. J. Heat and Mass Transfer, Vol. 43, 849-866, 2000.
62. D.J.Tritton. Physical Fluid Dynamics, van Nostrand Reinhold, 1st ed., 1977.
63. T.A.M.Versteegh and F.T.M.Nieuwstadt. DNS of natural convection between two vertical, differentially heated walls. Proc. 11th Symposium on Turbulent Shear Flows, Grenoble, 1997.
64. N.P.Waterson. Simulation of turbulent flow, heat and mass transfer using a residual-distribution approach. PhD Thesis, Delft University of Technology, The Netherlands, 2003.
65. J.X.Wen, F.Liu and S.Lo. Performance comparison of a buoyancy-modified turbulence model with three LRN turbulence models for a square cavity. Numerical Heat Transfer, Part B, 39:257-276, 2001.
66. K.H. Winters. Laminar natural convection in a partially divided rectangular cavity at high Rayleigh number. Int. J. Numerical Methods in Fluids, 8:247281, 1988.
© copyright ERCOFTAC 2004
Contributors: Nicholas Waterson - Mott MacDonald Ltd